REVIEWS

Advances in Free-Radical Promoted C(sp3)—C(sp3) Bond Conversion

  • Jintao Wu ,
  • Zhongquan Liu
Expand
  • College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023
* Corresponding author. E-mail:

Received date: 2021-08-23

  Revised date: 2021-09-17

  Online published: 2021-09-27

Supported by

National Natural Science Foundation of China(21971116)

Abstract

Efficient C—C bond conversion might bring innovation to clean energy and circular economy. In the past several decades, developments of relatively chemical active carbon-carbon multibond conversion have been made. However, the research progress on effective functionalization of inert C(sp3)—C(sp3) bond is heavy going. The advances in this area from a free-radical chemistry point of view are summarized, which can help researchers who are interested in this topic to understand it quickly. The progesses as well as the corresponding mechanisms for free-radical promoted selective cleavage of saturated C—C bonds in alcohols and ethers, amines, aryl alkanes and simple alkanes are demonstrated. In each part, the explorations are depicted according to the initiating manners such as thermochemistry, photochemistry and electrochemistry.

Cite this article

Jintao Wu , Zhongquan Liu . Advances in Free-Radical Promoted C(sp3)—C(sp3) Bond Conversion[J]. Chinese Journal of Organic Chemistry, 2022 , 42(1) : 16 -32 . DOI: 10.6023/cjoc202108043

References

[1]
For Selected reviews on C-C bond cleavage, see: (a) Drahl, M. A.; Manpadi, M.; Williams, L. J. Angew. Chem., Int. Ed. 2013, 52, 11222.
[1]
(b) Allpress, C. J.; Berreau, L. M. Coord. Chem. Rev. 2013, 257, 3005.
[1]
(c) Dong, G. In C-C Bond Activation, Vol. 346, Springer, Berlin, 2013, pp. 195-232.
[1]
(d) Chen, F.; Wang, T.; Jiao, N. Chem. Rev. 2014, 114, 8613.
[1]
(e) Marek, I.; Masarwa, A.; Delaye, P.; Leibeling, M. Angew. Chem., Int. Ed. 2015, 54, 414.
[1]
(f) Chen, P.; Billett, B. A.; Tsukamoto, T.; Dong, G. ACS Catal. 2017, 7, 1340.
[1]
(g) To, C. T.; Chan, K. S. Acc. Chem. Res. 2017, 50, 1702.
[1]
(h) Kim, D.; Park, W.; Jun, C. Chem. Rev. 2017, 117, 8977.
[1]
(i) Fumagalli, G.; Stanton, S.; Bower, J. F. Chem. Rev. 2017, 117, 9404.
[1]
(j) Song, F.; Gou, T.; Wang, B.-Q.; Shi, Z.-J. Chem. Soc. Rev. 2018, 47, 7078.
[1]
(k) Sivaguru, P.; Wang, Z.; Zanoni, G.; Bi, X. Chem. Soc. Rev. 2019, 48, 2615.
[1]
(l) Wang, B.; Perea, M. A.; Sarpong, R. Angew. Chem., Int. Ed. 2020, 59, 18898.
[1]
(m) Dai, P.-F.; Wang, H.; Cui, X.-C.; Qu, J.-P.; Kang, Y.-B. Org. Chem. Front. 2020, 7, 896.
[1]
(n) Yu, X.-Y.; Chen, J.-R.; Xiao, W.-J. Chem. Rev. 2021, 121, 506.
[1]
(o) Wang, J. H.; Blaszczyk, S. A.; Li, X.; Tang, W. Chem. Rev. 2021, 121, 110.
[1]
(p) Murakami, M.; Ishida, N. Chem. Rev. 2021, 121, 264.
[2]
For selected recent reports on C(sp2)-C bond cleavage, see: (a) Xia, Y.; Lu, G.; Liu, P.; Dong, G. Nature 2016, 539, 546.
[2]
(b) Yu, X.-Y.; Chen, J.-R.; Wang, P.-Z.; Yang, M.-N.; Liang, D.; Xiao, W.-J. Angew. Chem., Int. Ed. 2018, 57, 738.
[2]
(c) Dauncey, E. M.; Morcillo, S. P.; Douglas, J. J.; Sheikh, N. S.; Leonori, D. Angew. Chem., Int. Ed. 2018, 57, 744.
[2]
(d) Liu, J.; Qiu, X.; Huang, X.; Luo, X.; Zhan, C.; Wei, J.; Pan, J.; Liang, Y.; Zhu, Y.; Qin, Q.; Song, S.; Jiao, N. Nat. Chem. 2019, 11, 7.
[2]
(e) Smaligo, A. J.; Swain, M.; Quintana, J. C.; Tan, M. F.; Kim, D. A.; Kwon, O. Science 2019, 364, 681.
[2]
(f) Hicks, J.; Vasko, P.; Goicoechea, J. M.; Aldridge, S. J. Am. Chem. Soc. 2019, 141, 11000.
[2]
(g) Liu, J.; Zhang, C.; Zhang, Z.; Wen, X.; Dou, X.; Wei, J.; Qiu, X.; Song, S.; Jiao, N. Science. 2020, 367, 281.
[2]
(h) Swain, M.; Sadykhov, G.; Wang, R.; Kwon, O. Angew. Chem., Int. Ed. 2020, 59, 17565.
[2]
(i) Wang, G.; Guo, Y.; Wan, J. Chin. J. Org. Chem. 2020, 40, 645. (in Chinese)
[2]
(王国栋, 郭艳辉, 万结平, 有机化学, 2020, 40, 645.)
[2]
(j) Wang, M.; Wu, Y.; Yao, J.; Deng, L.; Pan, Y.; Huang, K.; Tang, H. Chin. J. Org. Chem. 2019, 39, 3223. (in Chinese)
[2]
(王毛锐, 吴雨峥, 姚健, 邓黎, 潘英明, 黄克斌, 唐海涛, 有机化学, 2019, 39, 3223.)
[2]
(k) Dai, H.; Wu, F.; Bai, D. Chin. J. Org. Chem. 2020, 40, 1423. (in Chinese)
[2]
(代洪雪, 吴芬, 白大昌, 有机化学, 2020, 40, 1423.)
[3]
For selected reviews on cleavage of C-C bond in alcohols and/or ethers, see: (a) Ishida, N.; Murakami, M. Chem. Lett. 2017, 46, 1692.
[3]
(b) Jia, K.; Chen, Y. Chem. Commun. 2018, 54, 6105.
[3]
(c) Wang, M.; Ma, J.; Liu, H.; Luo, N.; Zhao, Z.; Wang, F. ACS Catal. 2018, 8, 2129.
[3]
(d) Wu, X.; Zhu, C. Acc. Chem. Res. 2020, 53, 1620.
[3]
(e) McDonald, T. R.; Mills, L. R.; West, M. S.; Rousseaux, S. A. L. Chem. Rev. 2021, 121, 3.
[3]
(f) Lutz, M. D. R.; Morandi, B. Chem. Rev. 2021, 121, 300.
[4]
Schaafsma, S. E.; Jorritsma, R.; Steinberg, H.; de Boer. T. J. Tetrahedron Lett. 1973, 11, 827.
[5]
Iwasawa, N.; Hayakawa, S.; Isobe, K.; Narasaka, K. Chem. Lett. 1991, 20, 1193.
[6]
Iwasawa, N.; Funahnashi, M.; Hayakawa, S.; Narasaka, K. Chem. Lett. 1993, 22, 545.
[7]
Ilangovan, A.; Saravanakumar, S.; Malayappasamy, S. Org. Lett. 2013, 15, 4968.
[8]
Zhao, H.; Fan, X.; Yu, J.; Zhu, C. J. Am. Chem. Soc. 2015, 137, 3490.
[9]
(a) Shimizu, M.; Hiyama, T. Angew. Chem., Int. Ed. 2005, 44, 214.
[9]
(b) Rozen, S. Eur. J. Org. Chem. 2005, 2433.
[9]
(b) Sanford, G. J. Fluorine Chem. 2007, 128, 90.
[9]
(d) Kirk, K. L. Org. Process Res. Dev. 2008, 12, 305.
[9]
(e) Furuya, T.; Kuttruff, C. A.; Ritter, T. Curr. Opin. Drug Discovery Dev. 2008, 11, 803.
[9]
(f) Hu, J.; Zhang, W.; Wang, F. Chem. Commun. 2009, 7465.
[9]
(g) Furuya, T.; Klein, J. E. M. N.; Ritter, T. Synthesis 2010, 1804.
[9]
(h) Furuya, T.; Kamlet, A. S.; Ritter, T. Nature 2011, 473, 470.
[9]
(i) Hollingworth, C.; Gouverneur, V. Chem. Commun. 2012, 48, 2929.
[9]
(j) Tredwell, M.; Gouverneur, V. Angew. Chem., Int. Ed. 2012, 51, 11426.
[9]
(k) Liang, T.; Neumann, C. N.; Ritter, T. Angew. Chem., Int. Ed. 2013, 52, 8214.
[9]
(l) Li, Y.; Wu, Y.; Li, G.-S.; Wang, X. S. Adv. Synth. Catal. 2014, 356, 1412.
[9]
(m) Brooks, A. F.; Topczewski, J. J.; Ichiishi, N.; Sanford, M. S.; Scott, P. J. H. Chem. Sci. 2014, 5, 4545.
[10]
Ren, R.; Zhao, H.; Huan, L.; Zhu, C. Angew. Chem., Int. Ed. 2015, 54, 12692.
[11]
(a) Brase, S.; Gil, C.; Knepper, K.; Zimmermann, V. Angew. Chem., Int. Ed. 2005, 44, 5188.
[11]
(b) Lapointe, G.; Kapat, A.; Weidner, K.; Renaud, P. Pure Appl. Chem. 2012, 84, 1633.
[12]
Ren, R.; Wu, Z.; Xu, Y.; Zhu, C. Angew. Chem., Int. Ed. 2016, 55, 2866.
[13]
(a) Michelin, R. A.; Mozzon, M.; Bertani, R. Coord. Chem. Rev. 1996, 147, 299.
[13]
(b) Kukushkin, V. Y.; Pombeiro, A. J. L. Chem. Rev. 2002, 102, 1771.
[13]
(c) Kukushkin, V. Y.; Pombeiro, A. J. L. Inorg. Chim. Acta 2005, 358, 1.
[14]
Wang, M.; Lu, J.; Li, L.; Li, H.; Liu, H.; Wang, F. J. Catal. 2017, 348, 160.
[15]
(a) Wertz, S.; Studer, A. Green Chem. 2013, 15, 3116.
[15]
(b) Cao, Q.; Dornan, L. M.; Rogan, L.; Hughes, N. L.; Muldoon, M. J. Chem. Commun. 2014, 50, 4524.
[15]
(c) Nutting, M. J.; Rafiee, E.; Stahl, S. S. Chem. Rev. 2018, 118, 4834.
[15]
(d) Shibuya, M.; Shibuta, T.; Fukuda, H.; Iwabuchi, Y. Org. Lett. 2012, 14, 5010.
[16]
Liu, M.; Zhang, Z.; Song, J.; Liu, S.; Liu, H.; Han, B. Angew. Chem., Int. Ed. 2019, 58, 17393.
[17]
Liu, M.; Zhang, R.; Yan, J.; Liu, S.; Liu, H.; Liu, Z.; Wang, W.; He, Z.; Han, B. Chem 2020, 6, 3288.
[18]
Kim, S. M.; Shin, H. Y.; Kim, D. W.; Yang, J. W. ChemSusChem 2016, 9, 241.
[19]
Luo, H.; Wang, L.; Shang, S.; Li, G.; Lv, Y.; Gao, S.; Dai, W. Angew. Chem., Int. Ed. 2020, 59, 19268.
[20]
Bloom, S.; Bume, D. D.; Pitts, C. R.; Lectka, T. Chem. Eur. J. 2015, 21, 8060.
[21]
Ji, M.; Wu, Z.; Zhu, C. Chem. Commun. 2019, 55, 2368.
[22]
(a) Kirsch, S. F. Org. Biomol. Chem. 2006, 4, 2076.
[22]
(b) Bellina, F.; Rossi, R. Tetrahedron 2006, 62, 7213.
[23]
Yayla, G. H.; Wang, H.; Tarantino, K. T.; Orbe, H. S.; Knowles, R. R. J. Am. Chem. Soc. 2016, 138, 10794.
[24]
Jia, K.; Zhang, F.; Huang, H.; Chen, Y. J. Am. Chem. Soc. 2016, 138, 1514.
[25]
Guo, J.; Hu, A.; Chen, Y.; Sun, J.; Tang, H.; Zuo, Z. W. Angew. Chem., Int. Ed. 2016, 128, 15319.
[26]
Ota, E.; Wang, H.; Frye, N. L.; Knowles, R. R. J. Am. Chem. Soc. 2019, 141, 1457.
[27]
Gazi, S.; Ng, W. K. H.; Ganguly, R.; Moeljadi, A. M. P.; Hirao, H.; Soo, H. S. Chem. Sci. 2015, 6, 7130.
[28]
Wang, Y.; Yang, L.; Liu, S.; Huang, L.; Liu, Z. Q. Adv. Synth. Catal. 2019, 361, 4568.
[29]
Shi, S.; Liang, Y.; Jiao, N. Chem. Rev. 2021, 121, 485.
[30]
Khan, F. N.; Jayakumar, R.; Pillai, C. N. J. Mol. Catal. A: Chem. 2003, 195, 139.
[31]
Liu, Z.; Zhao, L.; Shang, X.; Cui, Z. Org. Lett. 2012, 14, 3218.
[32]
For selected reviews on cleavage of C-C bond in amines, see: (a) Morcillo, S. P. Angew. Chem., Int. Ed. 2019, 58, 14044.
[32]
(b) Sokolova, O. O.; Bower, J. F. Chem. Rev. 2021, 121, 80.
[33]
Roque, J. B.; Kuroda, Y.; Göttemann, L. T.; Sarpong, R. Science 2018, 361, 171.
[34]
Roque, J. B.; Kuroda, Y.; Göttemann, L. T.; Sarpong, R. Nature 2018, 564, 244.
[35]
Li, W.; Liu, W.; Leonard, D. K.; Rabeah, J.; Junge, K.; Brückner, A.; Beller, M. Angew. Chem., Int. Ed. 2019, 58, 10693.
[36]
He, Y.; Zheng, Z.; Liu, Y.; Qiao, J.; Zhang, X.; Fan, X. Org. Lett. 2019, 21, 1676.
[37]
He, K.; Zhang, T.; Zhang, S.; Sun, Z.; Zhang, Y.; Jia, X. Org. Lett. 2019, 21, 5030.
[38]
Yu, Y.; Zhang, Y.; Sun, C.; Shi, L.; Wang, W.; Li, H. J. Org. Chem. 2020, 85, 2725.
[39]
Cai, S.; Zhao, X.; Wang, X.; Liu, Q.; Li, Z.; Wang, D. Z. Angew. Chem., Int. Ed. 2012, 51, 8050.
[40]
(a) Nguyen, T. H.; Morris, S. A.; Zheng, N. Adv. Synth. Catal. 2014, 356, 2831.
[40]
(b) Morris, S. A.; Wang, J.; Zheng, N. Acc. Chem. Res. 2016, 49, 1957.
[40]
(c) Cai, Y.; Wang, J.; Zhang, Y.; Li, Z.; Hu, D.; Zheng, N.; Chen, H. J. Am. Chem. Soc. 2017, 139, 12259.
[41]
Liu, Z.; Wu, S.; Chen, Y. ACS Catal. 2021, 11, 10565.
[42]
Shono, T.; Matsumura, Y.; Inoue, K. J. Am. Chem. Soc. 1984, 106, 6075.
[43]
Yang, S.; Wang, L.; Zhang, H.; Liu, C.; Zhang, L.; Wang, X.; Zhang, G.; Li, Y.; Zhang, Q. ACS Catal. 2019, 9, 716.
[44]
Wang, L.; Wang, X.; Zhang, G.; Yang, S.; Li, Y.; Zhang, Q. Org. Chem. Front. 2019, 6, 2934.
[45]
Zhao, J.; Shen, T.; Sun, Z.; Wang, N.; Yang, L.; Wu, J.; You, H.; Liu, Z. Q. Org. Lett. 2021, 23, 4057.
[46]
(a) Rao, V. R.; Hixson, S. S. J. Am. Chem. Soc. 1979, 101, 6458.
[46]
(b) Hixson, S. S.; Garrett, D. W. J. Am. Chem. Soc. 1974, 96, 4872.
[47]
Pitts, C. R.; Ling, B.; Snyder, J. A.; Bragg, A. E.; Lectka, T. J. Am. Chem. Soc. 2016, 138, 6598.
[48]
Petzold, D.; Singh, P.; Almqvist, F.; König, B. Angew. Chem., Int. Ed. 2019, 58, 8577.
[49]
Wang, Y.; Wang, N.; Zhao, J.; Sun, M.; You, H.; Fang, F.; Liu, Z. Q. ACS Catal. 2020, 10, 6603.
[50]
Shono, T.; Matsumura, Y. J. Org. Chem. 1970, 35, 4157.
[51]
Zollinger, D.; Griesbach, U.; Putter, H.; Comninellis, C. Electrochem. Commun. 2004, 6, 605.
[52]
Peng, P.; Yan, X.; Zhang, K.; Liu, Z.; Zeng, L.; Chen, Y.; Zhang, H.; Lei, A. Nat. Commun. 2021, 12, 3075.
[53]
Ishii, Y.; Iwahama, T; Sakaguchi, S.; Nakayama, K.; Nishiyama, Y. J. Org. Chem. 1996, 61, 4520.
[54]
Hwang, K. C.; Sagadevan, A. Science 2014, 346, 1495.
[55]
Matsumoto, Y.; Kuriyama, M.; Yamamoto, K.; Nishida, K.; Onomura, O. Org. Process Res. Dev. 2018, 22, 1312.
Outlines

/