Chinese Journal of Organic Chemistry >
Cross-Coupling of C—Si Bond by Using of Silyl Electrophiles
Received date: 2021-08-23
Revised date: 2021-09-16
Online published: 2021-10-21
Supported by
Beijing Natural Science Foundation(2204091); National Natural Science Foundation of China(21901263)
Organosilanes have been widely applied in synthetic chemistry, materials, pharmaceuticals, agrochemicals due to the special properties. The synthesis of organosilanes has been successfully developed by several strategies including nucleophilic substitution, hydrosilylation of alkene and C—H silylation. In recent years, significant achievements have been advanced in the cross-coupling of C—Si bond by using of silyl electrophiles, especially in the break-through of the reductive cross-coupling of silyl electrophiles and carbon electrophiles. It is emerging as one of the hottest issues in synthetic chemistry. In the review, the recent progress on the cross-coupling for C—Si bond formation by using of silyl electrophiles is summarized. The reaction type including silyl-Heck, silyl-Negishi, silyl-Kumada, silyl-reductive-electrophile-coupling, multicomponent coupling reaction and radical silylation was mainly discussed. In the meanwhile, the intramolecular C—Si coupling via demethylation of aryl silanes is also discussed.
Siqi Cong , Mengya Liu , Siyuan Peng , Qiucui Zheng , Mengjiao Li , Yan Guo , Feixian Luo . Cross-Coupling of C—Si Bond by Using of Silyl Electrophiles[J]. Chinese Journal of Organic Chemistry, 2022 , 42(2) : 384 -390 . DOI: 10.6023/cjoc202108045
[1] | Brook, M. A. Silicon in Organic, Organometallic, and Polymer Chemistry, Wiley, New York, 2000, Chapter 5. |
[2] | (a) Tondreau, A. M.; Atienza, C. C. H.; Weller, K. J.; Nye, S. A.; Lewis, K. M.; Delis, J. G. P.; Chirik, P. J. Science 2012, 335, 567. |
[2] | (b) Peng, D.; Zhang, Y.; Du, X.; Zhang, L.; Leng, X., Walter, M. D.; Huang, Z. J. Am. Chem. Soc. 2013, 135, 19154. |
[2] | (c) Buslov, I.; Becouse, J.; Mazza, S.; Montandon-Clerc, M.; Hu, X. Angew. Chem., Int. Ed. 2015, 54, 14523. |
[2] | (d) Chen, J.; Cheng, B.; Cao, M.; Lu, Z. Angew. Chem., Int. Ed. 2015, 54, 4661. |
[2] | (e) Sun, J.; Deng, L. ACS Catal. 2016, 6, 290. |
[2] | (f) Cheng, B.; Lu, P.; Zhang, H.; Cheng, X.; Lu, Z. J. Am. Chem. Soc. 2017, 139, 9439. |
[2] | (g) Yang, Y.; Song, R.-J.; Li, Y.; Ouyang, X.-H.; Li, J.-H.; He, D.-L. Chem. Commun. 2018, 54, 1441. |
[2] | (h) Liu, J.; Chen, W.; Li, J.; Cui, C. ACS Catal. 2018, 8, 2230. |
[2] | (i) Huai, G. Z.; Teng, H.-L.; Luo, Y.; Lou, S.-J.; Nishiura, M.; Hou, Z. Angew. Chem., Int. Ed. 2018, 57, 12342. |
[3] | (a) Cheng, C.; Hartwig, J. F. Chem. Rev. 2015, 115, 8946. |
[3] | (b) Toutov, A. A.; Liu, W.-B.; Betz, K. N.; Fedorov, A.; Stoltz, B. M.; Grubbs, R. H. Nature 2015, 518, 80. |
[3] | (c) Tobisu, M.; Onoe, M.; Yusuke Kita, Y.; Chatani, N. J. Am. Chem. Soc. 2009, 131, 7506. |
[3] | (d) Ihara, H.; Suginome, M. J. Am. Chem. Soc. 2009, 131, 7502. |
[3] | (e) Onoe, M.; Baba, K.; Kim, Y.; Kita, Y.; Mamoru Tobisu, M.; Chatani, N. J. Am. Chem. Soc. 2012, 134, 19477. |
[3] | (f) Liang, Y.; Geng, W.; Wei, J.; Xi, Z. Angew. Chem., Int. Ed. 2012, 51, 1934. |
[3] | (g) Ghavtadze, N.; Melkonyan, F. S.; Gulevich, A. V.; Huang, C.; Gevorgyan, V. Nat. Chem. 2014, 6. 122. |
[3] | (h) Kanyiva, K. S.; Kuninobu, Y.; Kanai, M. Org. Lett. 2014, 16, 1968. |
[3] | (i) Liu, Y. J.; Liu, Y. H.; Zhang, Z. Z.; Yan, S. Y.; Chen, K.; Shi, B. F. Angew. Chem., Int. Ed. 2016, 55, 13859. |
[3] | (j) Li, W.; Huang, X.; You, J. Org. Lett. 2016, 18, 666. |
[3] | (k) Zhao, W.-T.; Lu, Z.-Q.; Zheng, H.; Xue, X.-S.; Zhao, D. ACS Catal. 2018, 8, 7997. |
[4] | Database of iBonD 2.0, http://ibond.nankai.edu.cn/bde/# |
[5] | (a) Korch, K. M.; Watson, D. A. Chem. Rev. 2019, 119, 8192. |
[5] | (b) Bähr, S.; Xue, W.; Oestreich, M. ACS Catal. 2019, 9, 16. |
[5] | (c) Murakami, K.; Hirano, K.; Yorimitsu, H.; Oshima, K. Angew. Chem., Int. Ed. 2008, 47, 5833. |
[5] | (d) Zhang, Q. W.; An, K.; He, W. Angew. Chem., Int. Ed. 2014, 53, 5667. |
[5] | (e) Li, L. W.; Zhang, Y. B.; Gao, L.; Song, Z. L. Tetrahedron Lett. 2015, 56, 1466. |
[5] | (f) Zhang, L.; Hang, Z.; Liu, Z.-Q. Angew. Chem., Int. Ed. 2016, 55, 236. |
[5] | (g) Xu, Z.; Xu, J. Z.; Zhang, J.; Zheng, Z. J.; Cao, J.; Cui, Y. M.; Xu, L. W. Chem. Asian J. 2017, 12, 1749. |
[5] | (h) Li, W.; Xiao, G.; Deng, G.; Liang, Y. Org. Chem. Front. 2018, 5, 1488. |
[6] | (a) Duan, J.; Wang, K.; Xu, G.-L.; Kang, S.; Qi, L.; Liu, X.-Y.; Shu, X.-Z. Angew. Chem., nt. Ed. 2020, 59, 23083. |
[6] | (b) Zhang, L.; Oestreich, M. Angew. Chem., Int. Ed. 2021, 60, 18587. |
[7] | Wang, M.-F.; Yu, M.-D.; Wang, W.-S.; Lin, W.-L.; Luo, F.-X. Chin. J. Org. Chem. 2019, 39, 3145. (in Chinese) |
[7] | ( 王明凤, 余茂栋, 王文蜀, 林伟立, 罗斐贤, 有机化学, 2019, 39, 3145.) |
[8] | Kuyper, J. Inorg. Chem. 1978. 17, 77. |
[9] | Yamashita, H.; Hayashi, T.; Kobayashi, T.; Tanaka, M.; Goto M. J. Am. Chem. Soc. 1988, 110, 4417. |
[10] | Yamashita, H.; Kobayashi, T.; Hayashi, T.; Tanaka, M. Chem. Lett. 1990, 19, 1447. |
[11] | Mitton, S.J.; McDonald, R.; Turculet, L. Organometallics 2009, 28, 5122. |
[12] | Yamashita, H.; Kobayashi, T.-A.; Hayashi, T.; Tanaka, M. Chem. Lett. 1991. 20, 761. |
[13] | McAtee, J. R.; Martin, S. E.; Ahneman, D. T.; Johnson, K. A.; Watson, D. A. Angew. Chem., Int. Ed. 2012, 51, 3663. |
[14] | Watson, D.; Martin, S. Synlett 2013, 24, 2177. |
[15] | Martin, S. E.; Watson, D. A. J. Am. Chem. Soc. 2013, 135, 13330. |
[16] | McAtee, J. R.; Yap, G. P. A.; Watson, D. A. J. Am. Chem. Soc. 2014, 136, 10166. |
[17] | Krause, S. B.; McAtee, J. R.; Yap, G. P. A.; Watson, D. A. Org. Lett. 2017, 19, 5641. |
[18] | McAtee, J. R.; Krause, S. B.; Watson, D. A. Adv. Synth. Catal. 2015, 357, 2317. |
[19] | McAtee, J. R.; Martin, S. E.; Cinderella, A. P.; Reid, W. B.; Johnson, K. A.; Watson, D. A. Tetrahedron 2014, 70, 4250. |
[20] | Matsumoto, K.; Huang, J.; Naganawa, Y.; Guo, H.; Beppu, T.; Sato, K.; Shimada, S.; Nakajima, Y. Org. Lett. 2018, 20, 2481. |
[21] | Dong, J.; Yuan, X. A.; Yan, Z.; Mu, L.; Ma, J.; Zhu, C.; Xie, J. Nat. Chem. 2021, 13, 182. |
[22] | Cinderella, A. P.; Vulovic, B.; Watson, D. A. J. Am. Chem. Soc. 2017, 139, 7741. |
[23] | Vulovic, B.; Cinderella, A. P.; Watson, D. A. ACS Cat. 2017, 7, 8113. |
[24] | Chatani, N.; Amishiro, N.; Murai, S. J. Am. Chem. Soc. 1991, 113, 7778. |
[25] | Chatani, N.; Amishiro, N.; Morii, T.; Yamashita, T.; Murai, S. J. Org. Chem. 1995, 60, 1834. |
[26] | Wisthoff, M. F.; Pawley, S. B.; Cinderella, A. P.; Watson, D. A. J. Am. Chem. Soc. 2020, 142, 12051. |
[27] | (a) Shang, X.; Liu, Z. Q. Org. Biomol. Chem. 2016, 14, 7829. |
[27] | (b) Li, J.-S.; Wu, J. ChemPhotoChem 2018, 2, 839. |
[28] | Lu, L.; Siu, J.; Lai, Y.; Lin, S. J. Am. Chem. Soc. 2020, 142, 21272. |
[29] | Liang, Y.; Zhang, S.; Xi, Z. J. Am. Chem. Soc. 2011, 133, 9204. |
/
〈 |
|
〉 |