REVIEWS

Cross-Coupling of C—Si Bond by Using of Silyl Electrophiles

  • Siqi Cong ,
  • Mengya Liu ,
  • Siyuan Peng ,
  • Qiucui Zheng ,
  • Mengjiao Li ,
  • Yan Guo ,
  • Feixian Luo
Expand
  • a Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081
    b College of Life and Environment Science, Minzu University of China, Beijing 100081
    c Department of Chemistry, Capital Normal University, Beijing 100048
    d Center for Bioimaging & System Biology, Minzu University of China, Beijing 100081
These authors contributed equally to this work.

Received date: 2021-08-23

  Revised date: 2021-09-16

  Online published: 2021-10-21

Supported by

Beijing Natural Science Foundation(2204091); National Natural Science Foundation of China(21901263)

Abstract

Organosilanes have been widely applied in synthetic chemistry, materials, pharmaceuticals, agrochemicals due to the special properties. The synthesis of organosilanes has been successfully developed by several strategies including nucleophilic substitution, hydrosilylation of alkene and C—H silylation. In recent years, significant achievements have been advanced in the cross-coupling of C—Si bond by using of silyl electrophiles, especially in the break-through of the reductive cross-coupling of silyl electrophiles and carbon electrophiles. It is emerging as one of the hottest issues in synthetic chemistry. In the review, the recent progress on the cross-coupling for C—Si bond formation by using of silyl electrophiles is summarized. The reaction type including silyl-Heck, silyl-Negishi, silyl-Kumada, silyl-reductive-electrophile-coupling, multicomponent coupling reaction and radical silylation was mainly discussed. In the meanwhile, the intramolecular C—Si coupling via demethylation of aryl silanes is also discussed.

Cite this article

Siqi Cong , Mengya Liu , Siyuan Peng , Qiucui Zheng , Mengjiao Li , Yan Guo , Feixian Luo . Cross-Coupling of C—Si Bond by Using of Silyl Electrophiles[J]. Chinese Journal of Organic Chemistry, 2022 , 42(2) : 384 -390 . DOI: 10.6023/cjoc202108045

References

[1]
Brook, M. A. Silicon in Organic, Organometallic, and Polymer Chemistry, Wiley, New York, 2000, Chapter 5.
[2]
(a) Tondreau, A. M.; Atienza, C. C. H.; Weller, K. J.; Nye, S. A.; Lewis, K. M.; Delis, J. G. P.; Chirik, P. J. Science 2012, 335, 567.
[2]
(b) Peng, D.; Zhang, Y.; Du, X.; Zhang, L.; Leng, X., Walter, M. D.; Huang, Z. J. Am. Chem. Soc. 2013, 135, 19154.
[2]
(c) Buslov, I.; Becouse, J.; Mazza, S.; Montandon-Clerc, M.; Hu, X. Angew. Chem., Int. Ed. 2015, 54, 14523.
[2]
(d) Chen, J.; Cheng, B.; Cao, M.; Lu, Z. Angew. Chem., Int. Ed. 2015, 54, 4661.
[2]
(e) Sun, J.; Deng, L. ACS Catal. 2016, 6, 290.
[2]
(f) Cheng, B.; Lu, P.; Zhang, H.; Cheng, X.; Lu, Z. J. Am. Chem. Soc. 2017, 139, 9439.
[2]
(g) Yang, Y.; Song, R.-J.; Li, Y.; Ouyang, X.-H.; Li, J.-H.; He, D.-L. Chem. Commun. 2018, 54, 1441.
[2]
(h) Liu, J.; Chen, W.; Li, J.; Cui, C. ACS Catal. 2018, 8, 2230.
[2]
(i) Huai, G. Z.; Teng, H.-L.; Luo, Y.; Lou, S.-J.; Nishiura, M.; Hou, Z. Angew. Chem., Int. Ed. 2018, 57, 12342.
[3]
(a) Cheng, C.; Hartwig, J. F. Chem. Rev. 2015, 115, 8946.
[3]
(b) Toutov, A. A.; Liu, W.-B.; Betz, K. N.; Fedorov, A.; Stoltz, B. M.; Grubbs, R. H. Nature 2015, 518, 80.
[3]
(c) Tobisu, M.; Onoe, M.; Yusuke Kita, Y.; Chatani, N. J. Am. Chem. Soc. 2009, 131, 7506.
[3]
(d) Ihara, H.; Suginome, M. J. Am. Chem. Soc. 2009, 131, 7502.
[3]
(e) Onoe, M.; Baba, K.; Kim, Y.; Kita, Y.; Mamoru Tobisu, M.; Chatani, N. J. Am. Chem. Soc. 2012, 134, 19477.
[3]
(f) Liang, Y.; Geng, W.; Wei, J.; Xi, Z. Angew. Chem., Int. Ed. 2012, 51, 1934.
[3]
(g) Ghavtadze, N.; Melkonyan, F. S.; Gulevich, A. V.; Huang, C.; Gevorgyan, V. Nat. Chem. 2014, 6. 122.
[3]
(h) Kanyiva, K. S.; Kuninobu, Y.; Kanai, M. Org. Lett. 2014, 16, 1968.
[3]
(i) Liu, Y. J.; Liu, Y. H.; Zhang, Z. Z.; Yan, S. Y.; Chen, K.; Shi, B. F. Angew. Chem., Int. Ed. 2016, 55, 13859.
[3]
(j) Li, W.; Huang, X.; You, J. Org. Lett. 2016, 18, 666.
[3]
(k) Zhao, W.-T.; Lu, Z.-Q.; Zheng, H.; Xue, X.-S.; Zhao, D. ACS Catal. 2018, 8, 7997.
[4]
Database of iBonD 2.0, http://ibond.nankai.edu.cn/bde/#
[5]
(a) Korch, K. M.; Watson, D. A. Chem. Rev. 2019, 119, 8192.
[5]
(b) Bähr, S.; Xue, W.; Oestreich, M. ACS Catal. 2019, 9, 16.
[5]
(c) Murakami, K.; Hirano, K.; Yorimitsu, H.; Oshima, K. Angew. Chem., Int. Ed. 2008, 47, 5833.
[5]
(d) Zhang, Q. W.; An, K.; He, W. Angew. Chem., Int. Ed. 2014, 53, 5667.
[5]
(e) Li, L. W.; Zhang, Y. B.; Gao, L.; Song, Z. L. Tetrahedron Lett. 2015, 56, 1466.
[5]
(f) Zhang, L.; Hang, Z.; Liu, Z.-Q. Angew. Chem., Int. Ed. 2016, 55, 236.
[5]
(g) Xu, Z.; Xu, J. Z.; Zhang, J.; Zheng, Z. J.; Cao, J.; Cui, Y. M.; Xu, L. W. Chem. Asian J. 2017, 12, 1749.
[5]
(h) Li, W.; Xiao, G.; Deng, G.; Liang, Y. Org. Chem. Front. 2018, 5, 1488.
[6]
(a) Duan, J.; Wang, K.; Xu, G.-L.; Kang, S.; Qi, L.; Liu, X.-Y.; Shu, X.-Z. Angew. Chem., nt. Ed. 2020, 59, 23083.
[6]
(b) Zhang, L.; Oestreich, M. Angew. Chem., Int. Ed. 2021, 60, 18587.
[7]
Wang, M.-F.; Yu, M.-D.; Wang, W.-S.; Lin, W.-L.; Luo, F.-X. Chin. J. Org. Chem. 2019, 39, 3145. (in Chinese)
[7]
( 王明凤, 余茂栋, 王文蜀, 林伟立, 罗斐贤, 有机化学, 2019, 39, 3145.)
[8]
Kuyper, J. Inorg. Chem. 1978. 17, 77.
[9]
Yamashita, H.; Hayashi, T.; Kobayashi, T.; Tanaka, M.; Goto M. J. Am. Chem. Soc. 1988, 110, 4417.
[10]
Yamashita, H.; Kobayashi, T.; Hayashi, T.; Tanaka, M. Chem. Lett. 1990, 19, 1447.
[11]
Mitton, S.J.; McDonald, R.; Turculet, L. Organometallics 2009, 28, 5122.
[12]
Yamashita, H.; Kobayashi, T.-A.; Hayashi, T.; Tanaka, M. Chem. Lett. 1991. 20, 761.
[13]
McAtee, J. R.; Martin, S. E.; Ahneman, D. T.; Johnson, K. A.; Watson, D. A. Angew. Chem., Int. Ed. 2012, 51, 3663.
[14]
Watson, D.; Martin, S. Synlett 2013, 24, 2177.
[15]
Martin, S. E.; Watson, D. A. J. Am. Chem. Soc. 2013, 135, 13330.
[16]
McAtee, J. R.; Yap, G. P. A.; Watson, D. A. J. Am. Chem. Soc. 2014, 136, 10166.
[17]
Krause, S. B.; McAtee, J. R.; Yap, G. P. A.; Watson, D. A. Org. Lett. 2017, 19, 5641.
[18]
McAtee, J. R.; Krause, S. B.; Watson, D. A. Adv. Synth. Catal. 2015, 357, 2317.
[19]
McAtee, J. R.; Martin, S. E.; Cinderella, A. P.; Reid, W. B.; Johnson, K. A.; Watson, D. A. Tetrahedron 2014, 70, 4250.
[20]
Matsumoto, K.; Huang, J.; Naganawa, Y.; Guo, H.; Beppu, T.; Sato, K.; Shimada, S.; Nakajima, Y. Org. Lett. 2018, 20, 2481.
[21]
Dong, J.; Yuan, X. A.; Yan, Z.; Mu, L.; Ma, J.; Zhu, C.; Xie, J. Nat. Chem. 2021, 13, 182.
[22]
Cinderella, A. P.; Vulovic, B.; Watson, D. A. J. Am. Chem. Soc. 2017, 139, 7741.
[23]
Vulovic, B.; Cinderella, A. P.; Watson, D. A. ACS Cat. 2017, 7, 8113.
[24]
Chatani, N.; Amishiro, N.; Murai, S. J. Am. Chem. Soc. 1991, 113, 7778.
[25]
Chatani, N.; Amishiro, N.; Morii, T.; Yamashita, T.; Murai, S. J. Org. Chem. 1995, 60, 1834.
[26]
Wisthoff, M. F.; Pawley, S. B.; Cinderella, A. P.; Watson, D. A. J. Am. Chem. Soc. 2020, 142, 12051.
[27]
(a) Shang, X.; Liu, Z. Q. Org. Biomol. Chem. 2016, 14, 7829.
[27]
(b) Li, J.-S.; Wu, J. ChemPhotoChem 2018, 2, 839.
[28]
Lu, L.; Siu, J.; Lai, Y.; Lin, S. J. Am. Chem. Soc. 2020, 142, 21272.
[29]
Liang, Y.; Zhang, S.; Xi, Z. J. Am. Chem. Soc. 2011, 133, 9204.
Outlines

/