Chinese Journal of Organic Chemistry >
1,6-Addition of Nitrogen Nucleophile to para-Quinone Methides Catalyzed by Recyclable Bismuth Complex: Facile Access to N-Heterocyclic Substituted Unsymmetric Triarylmethane Derivatives
Received date: 2021-09-17
Revised date: 2021-11-08
Online published: 2021-11-25
Supported by
National Natural Science Foundation of China(21901087); Natural Science Foundation of Jiangsu Province(BK20190591)
A useful protocol for the synthesis of nitrogen-containing unsymmetric triarylmethane derivatives through 1,6-aza-Michael addition of para-quinone methides (p-QMs) and various aromatic N-heterocycles was developed. This established synthetic strategy features mild reaction conditions, acceptable catalyst loading, atom economy, easy scale-up and enables the formation of N-heterocyclic-substituted unsymmetric triarylmethane derivatives in moderate to excellent yields. Moreover, the bismuth catalyst can be reused several times without losing of its activity.
Donglan Liu , Haiyan Xu , Yi Hang , Hongfei Lu . 1,6-Addition of Nitrogen Nucleophile to para-Quinone Methides Catalyzed by Recyclable Bismuth Complex: Facile Access to N-Heterocyclic Substituted Unsymmetric Triarylmethane Derivatives[J]. Chinese Journal of Organic Chemistry, 2022 , 42(3) : 796 -802 . DOI: 10.6023/cjoc202109026
[1] | Gao, S.; Xu, X. Y.; Yuan, Z. B.; Zhou, H. P.; Yao, H. Q.; Lin, A. J. Eur. J. Org. Chem. 2016, 3006. |
[2] | (a) Shirakawa, S.; Kobayashi, S. Org. Lett. 2006, 8, 4939. |
[2] | (b) Kumar, S.; Malik, V.; Kaur, N.; Kaur, K. Tetrahedron Lett. 2006, 47, 8483. |
[2] | (c) He, Q. L.; Sun, F. L.; Zheng, X. J.; You, S. L. Synlett. 2009, 1111. |
[2] | (d) Kim, Y.; Kwon, Y. I.; Kim, S. G. Synthesis. 2020, 52, 281. |
[2] | (e) Tuengpanya, S.; Chantana, C.; Sirion, U.; Siritanyong, W.; Srisook, K. Tetrahedron. 2018, 74, 4373. |
[2] | (f) Zhou, T.; Li, S. H.; Huang, B.; Li, C.; Zhao, Y.; Chen, J. Q.; Chen, A. L.; Xiao, Y. J.; Liu, L.; Zhang, J. L. Org. Biomol. Chem. 2017, 15, 4941. |
[2] | (g) Rodrigues, S. M. M.; Previdi, D.; Baviera, G. S.; Matias, A. A.; Donate, P. M. Synthesis. 2019, 51, 4498. |
[2] | (h) Beltrá, J.; Gimeno, M. C.; Herrera, R. P. Beilstein J. Org. Chem. 2014, 10, 2206. |
[2] | (i) Dhiman, S.; Ramasastry, S. S. V. Org. Biomol. Chem. 2013, 11, 8030. |
[2] | (a) Yu, J. Y.; Kuwano, R. Org. Lett. 2008, 10, 973. |
[2] | (b) Taylor, B. L. H.; Harris, M. R.; Jarvo, E. R. Angew. Chem., Int. Ed. 2012, 51, 1. |
[2] | (c) Wang, Z. H.; Zhu, Y. S.; Pan, X. G.; Wang, G.; Liu, L. Angew. Chem., Int. Ed. 2020, 59, 3053. |
[2] | (d) Yim, J. C.-H.; Nambo, M.; Tahara, Y.; Crudden, C. M. Chem. Lett. 2019, 48, 975. |
[2] | (a) Kumaran, S.; Prabhakaran, M.; Mariyammal, N.; Parthasarathy, K. Org. Biomol. Chem. 2020, 18, 7837. |
[2] | (b) Huang, G. B.; Huang, W. H.; Guo, J.; Xu, D. L.; Qu, X. C.; Zhai, P. H.; Zheng, X. H.; Weng, J.; Lu, G. Adv. Synth. Catal. 2019, 361, 1241. |
[2] | (c) Jillella, R.; Oh, D. H; Oh, C. H. New J. Chem. 2018, 42, 16886. |
[2] | (d) Rayaroth, A.; Singh, R. K.; Kalyanakrishnan, A. V.; Hari, K.; Kaliyamoorthy, A. Org. Biomol. Chem. 2020, 18, 3354. |
[3] | Guin, S.; Saha, H. K.; Patel, A. K.; Gudimella, S. K.; Biswas, S.; Samanta, S. Tetrahedron. 2020, 76, 131338. |
[4] | Wang, L.; Wang, N.; Qi, Y.; Sun, S. T.; Liu, X. G.; Li, W.; Liu, L. Chin. J. Org. Chem. 2020, 40, 3934. |
[4] | (a) Luo, J. F.; Wei, W, T. Adv. Synth. Catal. 2018, 360, 2076. |
[4] | (b) Bhunia, S.; Pawar, G, G.; Kumar, S. V.; Jiang, Y.W.; Ma, D. W. Angew. Chem., Int. Ed. 2017, 56, 16136. |
[5] | Wang, J. Y.; Hao, W. J.; Tu, S. J.; Jiang, B. Org. Chem. Front. 2020, 7, 1743. |
[6] | Arde, P.; Anand, R. V. RSC Adv. 2016, 6, 77111. |
[7] | Ma, Y. G.; Pang, J. X.; Pan, X. G.; Ma, S. T.; Liu, X. G.; Liu, L. Synlett 2020, 31, 1619. |
[8] | Wang, D. L.; Kan, L. L.; Ma, Y. D.; Liu, L. Chin. J. Org. Chem. 2021, 41, 3192. |
[9] | Liang, X. H.; Xu, H. Y.; Li, H. L.; Chen, L.Z.; Lu, H. F. Eur. J. Org. Chem. 2020, 2020, 217. |
[10] | Zhang, X.; Gu, X. Y.; Gao, Y. H.; Nie, S. P.; Lu, H. F. Appl. Organomet. Chem. 2017, 31, 3590. |
/
〈 |
|
〉 |