REVIEWS

Construction of Fluoro-containing Heterocycles Mediated by Free Radicals

  • Ning Chen ,
  • Jia Lei ,
  • Zhichuan Wang ,
  • Yingjie Liu ,
  • Kai Sun ,
  • Shi Tang
Expand
  • a School of Pharmacy, Harbin University of Commerce, Harbin 150076
    b School of Chemistry and Chemical Engineering, Yantai University, Yantai, Shandong 264005
    c College of Chemistry and Chemical Engineering, Jishou University, Jishou, Hunan 416000

Received date: 2021-09-22

  Revised date: 2021-11-12

  Online published: 2021-11-25

Supported by

National Natural Science Foundation of China(21801007); “Young Innovative Talents” of Harbin University of Commerce(2019CX09); Heilongjiang Postdoctoral Fund(LBH-Q20103); Harbin University of Commerce Doctoral Research Foundation(2019DS112)

Abstract

Fluoro-containing heterocyclics play an important role in many fields, such as organic chemistry, pharmaceutical chemistry and material science due to their excellent physical and chemical properties. However, there are few natural fluoro-containing heterocyclics in nature, so it is particularly important to develop efficient synthesis methods of fluoro- containing heterocyclics. With the rapid development of transition metal catalyzed, photocatalyzed and electrocatalyzed radical reactions, radical chemistry has made a breakthrough in the field of synthesis and stimulated the interest of organic chemists in constructing fluoro-containing heterocyclics by using radical chemistry. In this paper, monofluoroalkylation, difluoroalkylation, trifluoromethylation, trifluoroalkoxy/sulfur/selenylation, perfluoroalkylation of unsaturated hydrocarbons and direct C—H fluoroalkylation of heterocycles are classified, and the construction of fluorine-containing side chain heterocycles mediated by free radicals is discussed from the aspects of transition metal catalysis, photocatalysis and electrocatalysis.

Cite this article

Ning Chen , Jia Lei , Zhichuan Wang , Yingjie Liu , Kai Sun , Shi Tang . Construction of Fluoro-containing Heterocycles Mediated by Free Radicals[J]. Chinese Journal of Organic Chemistry, 2022 , 42(4) : 1061 -1084 . DOI: 10.6023/cjoc202109033

References

[1]
Schlosser, M. Angew. Chem., nt. Ed. 2006, 45, 5432.
[2]
Liu, Y.-J.; Han, Y.-H.; Lin, L.-Q.; Xu, Y. Chin. J. Org. Chem. 2021, 41, 934. (in Chinese)
[2]
( 刘颖杰, 韩莹徽, 林立青, 许颖, 有机化学, 2021, 41, 934.)
[3]
Chen, B.-Q.; Ge, D.-H.; Wang, X.; Chu, X.-Q. Chin. J. Org. Chem. 2021, 41, 1925. (in Chinese)
[3]
( 程步清, 葛丹华, 汪欣, 褚雪强, 有机化学, 2021, 41, 1925.)
[4]
Wang, S.-W.; Yu, J.; Zhou, Q.-Y.; Chen, S.-Y.; Xu, Z.-Y.; Tang, S. ACS Sustainable Chem. Eng. 2019, 7, 10154.
[5]
Tang, S.; Yuan, L.; Deng, Y.-L.; Li, Z.-Z.; Wang, L.-N.; Huang, G.-X.; Sheng, R.-L. Tetrahedron Lett. 2017, 58, 2127.
[6]
Du, K.-Y.; Zhang, Z.-M.; Sheng, W.-J. Chin. J. Org. Chem. 2021, 41, 3242. (in Chinese)
[6]
( 杜科莹, 张展铭, 盛卫坚, 有机化学, 2021, 41, 3242.)
[7]
Wang, X.; Lei, J.; Liu, Y.-J.; Ye, Y.; Li, J.-Z.; Sun, K. Org. Chem. Front. 2021, 8, 2079.
[8]
Pan, J.; Wu, J.-J.; Wu, F.-H. Chin. J. Org. Chem. 2021, 41, 983. (in Chinese)
[8]
( 潘军, 吴晶晶, 吴范宏, 有机化学, 2021, 41, 983.)
[9]
Zou, Z.-L.; Zhang, W.-G.; Wang, Y.; Pan, Y. Org. Chem. Front. 2021, 8, 2786.
[10]
Tang, X.; Thomoson, C. S.; Dolbier Jr., W. R. Org. Lett. 2014, 16, 4594.
[11]
Fu, W.-J.; Sun, Y.-N.; Li, X.-Y. Synth. Commun. 2020, 50, 388.
[12]
Wang, J.-Y.; Su, Y.-M.; Yin, F.; Bao, Y.; Zhang, X.; Xu, Y.-M.; Wang, X.-S. Chem. Commun. 2014, 50, 4108.
[13]
Wang, Y.-Q.; He, Y.-T.; Zhang, L.-L.; Wu, X.-X.; Liu, X.-Y.; Liang, Y.-M. Org. Lett. 2015, 17, 4280.
[14]
Hua, H.-L.; Zhang, B.-S.; He, Y.-T.; Qiu, Y.-F.; Hu, J.-Y.; Yang, Y.-C.; Liang, Y.-M. Chem. Commun. 2016, 52, 10396.
[15]
Lv, Y.-H.; Pu, W.-Y.; Chen, Q.; Wang, Q.-Q.; Niu, J.-J.; Zhang, Q. J. Org. Chem. 2017, 82, 8282.
[16]
Zhou, L.; Hossain, M.-L.; Xiao, T. Chem. Rec. 2016, 16, 319-334.
[17]
Wang, X.-Y.; Li, M.; Yang, Y.-Y.; Guo, M.-J.; Tang, X.-Y.; Wang, G.-W. Adv. Synth. Catal. 2018, 360, 2151.
[18]
Ma, J.-W.; Wang, Q.; Wang, X.-G.; Liang, Y.-M. J. Org. Chem. 2018, 83, 13296.
[19]
Da, Y.; Han, S.-N.; Du, X.-Y.; Liu, S.-D.; Liu, L.; Li, J. Org. Lett. 2018, 20, 5149.
[20]
Han, S.-N.; Liu, S.-D.; Ackermann, L.; Li, J. Org. Lett. 2019, 21, 5387.
[21]
Zhang, P.-B.; Wang, C.; Cui, M.-C.; Du, M.-S.; Li, W.-W.; Jia, Z.-X.; Zhao, Q. Org. Lett. 2020, 22, 1149.
[22]
Sun, K.; Wang, S.-N.; Feng, R.-R.; Zhang, Y.-X.; Wang, X.; Zhang, Z.-G.; Zhang, B. Org. Lett. 2019, 21, 2052.
[23]
Lv, Y.-H.; Pu, W.-Y.; Wang, Q.-Q.; Chen, Q.; Niu, J.-J.; Zhang, Q. Adv. Synth. Catal. 2017, 359, 3114.
[24]
Shen, Z.-J.; Wang, S.-C.; Hao, W.-J.; Yang, S.-Z.; Tu, S.-J.; Jiang, B. Adv. Synth. Catal. 2019, 361, 1.
[25]
Zhu, S.-Q.; Yang, H.-B.; Jiang, A.-L.; Zhou, B.; Han, Y.; Yan, C.-G.; Shi, Y.-C.; Hou, H. J. Org. Chem. 2020, 85, 15667.
[26]
Xiao, P.; Rong, J.; Ni, C.-F.; Guo, J.-K.; Li, X.-J.; Chen, D.-B.; Hu, J.-B. Org. Lett. 2016, 18, 5912.
[27]
Li, M.; Wang, C.-T.; Qiu, Y.-F.; Zhu, X.-Y.; Han, Y.-P.; Xia, Y.; Li, X.-S.; Liang, Y.-M. Chem. Commun. 2018, 54, 5334.
[28]
Fu, W.-J.; Zhu, M.; Zou, G.-L.; Xu, C.; Wang, Z.-Q.; Ji, B.-M. J. Org. Chem. 2015, 80, 4766.
[29]
Zhang, M.-L.; Li, W.-P.; Duan, Y.-Q.; Xu, P.; Zhang, S.-L.; Zhu, C.-J. Org. Lett. 2016, 18, 3266.
[30]
Yu, L.-C.; Gu, J.-W.; Zhang, S.; Zhang, X.-G. J. Org. Chem. 2017, 82, 3943.
[31]
Wang, Q.; Qu, Y.; Xia, Q.; Song, H.-J.; Song, H.-B.; Liu, Y.-X.; Wang, Q.-M. Chem.-Eur. J. 2018, 24, 11283.
[32]
Wang, Q.; Qu, Y.; Liu, Y.-X.; Song, H.-B.; Wang, Q.-M. Adv. Synth. Catal. 2019, 361, 4739.
[33]
Zhou, N.-N.; Wu, M.-X.; Zhang, M.; Zhou, X.-Q. Asian J. Org. Chem. 2019, 8, 828.
[34]
Chen, Y.-T.; Shu, C.-Y.; Luo, F.; Xiao, X.-H.; Zhu, H.-H. Chem. Commun. 2018, 54, 5373.
[35]
Song, D.; Wang, C.-M.; Ye, Z.-P.; Xia, P.-J.; Deng, Z.-X.; Xiao, J.-A.; Xiang, H.-Y.; Yang, H. J. Org. Chem. 2019, 84, 7480.
[36]
Sun, H.; Jiang, Y.; Yang, Y.-S.; Li, Y.-Y.; Li, L.; Wang, W.-X.; Feng, T.; Li, Z.-H.; Liu, J.-K. Org. Biomol. Chem. 2019, 17, 6629.
[37]
Xiong, P.; Xu, H.-H.; Song, J.-S.; Xu, H.-C. J. Am. Chem. Soc. 2018, 140, 2460.
[38]
Guo, J.-Y.; Wu, R.-X.; Jin, J.-K.; Tian, S.-K. Org. Lett. 2016, 18, 3850.
[39]
Taniguchi, T.; Idota, A.; Ishibashi, H. Org. Biomol. Chem. 2011, 9, 3151.
[40]
Zhang, S.; Li, L.-J.; Zhang, J.-J.; Zhang, J.-Q.; Xue, M.-Y.; Xu, K. Chem. Sci. 2019, 10, 3181.
[41]
Yuan, X.; Cui, Y.-S.; Zhang, X.-P.; Qin, L.-Z.; Sun, Q.; Duan, X.; Chen, L.; Li, G.-G.; Qiu, J.-K.; Guo, K. Chem.-Eur. J. 2021, 27, 6522.
[42]
Bhaskaran, R. P.; Babu, B. P. Adv. Synth. Catal. 2020, 362, 5219.
[43]
Liu, K.; Chen, S.; Li, X.-G.; Liu, P.-N. J. Org. Chem. 2016, 81, 265.
[44]
Meng, Q.; Chen, F.; Yu, W.; Han, B. Org. Lett. 2017, 19, 5186.
[45]
Li, J.-J.; Lei, Y.-F.; Yu, Y.; Qin, C.; Fu, Y.-W.; Li, H.; Wang, W. Org. Lett. 2017, 19, 6052.
[46]
Dong, J.-J.; Zhang, S.-L. Adv. Synth. Catal. 2020, 362, 795.
[47]
Ge, J.-Y.; Ding, Q.-P.; Wang, X.-H.; Peng, Y.-Y. J. Org. Chem. 2020, 85, 7658.
[48]
Zhou, X.; Huang, C.; Zeng, Y.; Xiong, J.; Xiao, Y.; Zhang, J. Chem. Commun. 2017, 53, 1084.
[49]
Wang, L.; Studer, A. Org. Lett. 2017, 19, 5701.
[50]
An, Y.-Y.; Kuang, Y.-Y.; Wu, J. Org. Chem. Front. 2016, 3, 994.
[51]
Xiang, Y.-C.; Kuang, Y.-Y.; Wu, J. Org. Chem. Front. 2016, 3, 901.
[52]
Han, H. S.; Oh, E. H.; Jung, Y. S.; Han, S. B. Org. Lett. 2018, 20, 1698.
[53]
Yuan, X.; Zheng, M.-W.; Di, Z.-C.; Cui, Y.-S.; Zhuang, K.-Q.; Qin, L.-Z.; Fang, Z. Qiu, J.-K.; Li, G.-G.; Guo, K. Adv. Synth. Catal. 2019, 361, 1835.
[54]
Wang, S.-W.; Dai, P.; Yan, Z.-C.; Wang, Y.-J.; Shao, J.-X.; Wu, Y.-H.; Deng, C.; Zhang, W.-H. ChemistrySelect 2019, 4, 10329.
[55]
Qi, X.-K.; Zhang, H.; Pan, Z.-T.; Liang, R.-B.; Zhu, C.-M.; Li, J.-H.; Tong, Q.-X.; Gao, X.-W.; Wu, L.-Z.; Zhong, J.-J. Chem. Commun. 2019, 55, 10848.
[56]
Zhuang, K.-Q.; Cui, Y.-S.; Yuan, X.; Qin, L.-Z.; Sun, Q.; Duan, X.; Chen, L.; Zhang, X.-P.; Qiu, J.-K.; Guo, K. ACS Sustainable Chem. Eng. 2020, 8, 11729.
[57]
Guo, Y.-J.; Pei, C.; Jana, S.; Koenigs, R. M. ACS Catal. 2021, 11, 337.
[58]
Ye, K.-Y.; Song, Z.-D.; Sauer, G. S.; Harenberg, J. H.; Fu, N.-K.; Lin, S. Chem.-Eur. J. 2018, 24, 12274.
[59]
Jiang, Y.-Y.; Dou, G.-Y.; Xu, K.; Zeng, C.-C. Org. Chem. Front. 2018, 5, 2573.
[60]
Zhang, Z.-X.; Zhang, L.; Cao, Y.; Li, F.; Bai, G.-C.; Liu, G.-Q.; Yang, Y.; Mo, F.-Y. Org. Lett. 2019, 21, 762.
[61]
Claraz, A.; Courant, T.; Masson, G. Org. Lett. 2020, 22, 1580.
[62]
Li, Z.; Jiao, L.-C.; Sun, Y.-H.; He, Z.-Y.; Wei, Z.-L.; Liao, W.-W. Angew. Chem., nt. Ed. 2020, 59, 7266.
[63]
Lin, L.; Liang, Q.; Kong, X.-Q.; Chen, Q.-J.; Xu, B. J. Org. Chem. 2020, 85, 15708.
[64]
Fuentes, N.; Kong, W.-Q.; Ferna?ndez-Sa?nchez, L.; Merino, E.; Nevado, C. J. Am. Chem. Soc. 2015, 137, 964.
[65]
Zheng, W.-J.; Morales-Rivera, C. A.; Lee, J. W.; Liu, P.; Ngai, M. Y. Angew. Chem., nt. Ed. 2018, 130, 9793.
[66]
Zheng, W.-J.; Lee, J. W.; Morales-Rivera, C. A.; Liu, P.; Ngai, M. Y. Angew. Chem., nt. Ed. 2018, 57, 13795.
[67]
Zhu, M.; Li, R.-X.; You, Q.-Q.; Fu, W.-J.; Guo, W.-S. Asian J. Org. Chem. 2019, 8, 2002.
[68]
Zhu, M.; Fu, W.-J.; Guo, W.-S.; Tian, Y.-F.; wang, Z.-Q.; Ji, B.-M. Org. Biomol. Chem. 2019, 17, 3374.
[69]
Guo, J.-C.; Hao, Y.-N.; Li.; Wang, Z.-W.; Liu, Y.-X.; Li, Y.-Q.; Wang, Q.-M. Org. Biomol. Chem. 2020, 18, 1994.
[70]
Zordo-Banliat, A. D.; Barthélémy, L.; Bourdreux, F.; Tuccio, B.; Dagousset, G.; Pégot, B.; Magnier, E. Eur. J. Org. Chem. 2020, 2020, 506.
[71]
Dix, S.; Golz, P.; Schmid, J. R.; Riedel, S.; Hopkinson, M. N. Chem.-Eur. J. 2021, 27, 11554.
[72]
Tang, S.; Deng, Y.-L.; Li, J.; Wang, W.-X.; Ding, G.-L.; Wang, M.-W.; Xiao, Z.-P.; Wang, Y.-C.; Sheng, R.-L. J. Org. Chem. 2015, 80, 12599
[73]
Deng, Y.-L.; Tang, S.; Ding, G.-L.; Wang, M.-W.; Li, J.; Li, Z.-Z.; Yuan, L.; Sheng, R.-L. Org. Biomol. Chem. 2016, 14, 9348.
[74]
Chu, X.-Q.; Xie, T.; Li, L.; Ge, D.-H.; Shen, Z.-L.; Loh, T. P. Org. Lett. 2018, 20, 2749.
[75]
Xiong, H.-G.; Ramkumar, N.; Chiou, M.-F.; Jian, W.-J.; Li, Y.-J.; Su, J.-H.; Zhang, X.-H.; Bao, H.-L. Nat. Commun. 2019, 10, 1.
[76]
Zeng, F.-L.; Sun, K.; Chen, X.-L.; Yuan, X.-Y.; He, S.-Q.; Liu, Y.; Peng, Y.-Y.; Qu, L.-B.; Lv, Q.-Y.; Yu, B. Adv. Synth. Catal. 2019, 361, 1.
[77]
Chen, Y.-J.; Li, L.-K.; He, X.; Li, Z.-P. ACS Catal. 2019, 9, 9098.
[78]
Fujiwara, Y.; Dixon, J. A.; Rodriguez, R. A.; Baxter, R. D.; Dixon, D. D.; Collins, M. R.; Blackmond, D. G.; Baran, P. S. J. Am. Chem. Soc. 2012, 134, 1494.
[79]
O'Brien, A. G.; Maruyama, A.; Inokuma, Y.; Fujita, M.; Baran, P. S.; Blackmond, D. G. Angew. Chem., nt. Ed. 2014, 53, 1.
[80]
Dou, G.-Y.; Jiang, Y.-Y.; Xu, K.; Zeng, C.-C. Org. Chem. Front. 2019, 6, 2392.
[81]
Zhang, S.-K.; Nicolas, R. L.; Weniger, F.; Rabeah, J.; Neumann, H.; Taeschler, C.; Beller, M. Chem. Commun. 2019, 55, 6723.
[82]
Qiu, Y.; Scheremetjew, A.; Finger, L. H.; Ackermann, L. Chem.- Eur. J. 2020, 26, 3241.
[83]
Hossain, M. J.; Ono, T.; Wakiya, K.; Hisaeda, Y. Chem. Commun. 2017, 53, 10878.
[84]
Rao, M.; Fan, Z.-W.; Yuan, Y.-F.; Cheng, J.-J. ChemCatChem 2020, 12, 5256.
[85]
Rodrigo, S.; Um, C.; Mixdorf, J. C.; Gunasekera, D.; Nguyen, H. M.; Luo, L. Org. Lett. 2020, 22, 6719.
[86]
Huang, J.-B.; Wu, D.-D.; Bai, X.-K.; Cai, P.-Y.; Zhu, W.-G. New J. Chem. 2021, 45, 4925.
Outlines

/