REVIEWS

Recent Advances in N-Arylation of NH-Sulfoximines and Their Applications

  • Xue Li ,
  • Cong Wang ,
  • Tiezheng Jia
Expand
  • Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055
* Corresponding author. E-mail:

Received date: 2021-10-09

  Revised date: 2021-11-02

  Online published: 2021-11-25

Supported by

Science and Technology Innovation Commission of Shenzhen Municipality(JCYJ20180302180256215)

Abstract

Sulfoximines represent an important structural motif in organic chemistry, and have been utilized as chiral auxiliaries, chiral ligands and organocatalysts. They also serve as key intermediates for the construction of heterocyclic compounds. Attributing to their unique bioactivities, sulfoximines have been developed as previliged pharmacophores and widely used in pharmaceutical chemistry and agriculture. Considering the wide applications, the synthetic methods to afford sulfoximines have attracted increasing attention. Among them, the direct arylation of NH-sulfoximines to prepare NAr- sulfoxmines exhibites some unique advantages, including atom-economics, mild conditions and step-economics, and thus has made tremedous progress in recent years. Various methods of NH-sulfoximines to afford NAr-sulfoximines via a C—N bond formation strategy, as well as their applications in synthesis of bioactive molecules and ligands for transition-metal catalysts, are reviewed.

Cite this article

Xue Li , Cong Wang , Tiezheng Jia . Recent Advances in N-Arylation of NH-Sulfoximines and Their Applications[J]. Chinese Journal of Organic Chemistry, 2022 , 42(3) : 714 -731 . DOI: 10.6023/cjoc202110011

References

[1]
Lücking, U. Angew. Chem., Int. Ed. 2013, 52, 9399.
[2]
Lücking, U.; Jautelat, R.; Krüger, M.; Brumby, T.; Lienau, P.; Schäfer, M.; Briem, H.; Schulze, J.; Hillisch, A.; Reichel, A.; Wengner, A. M.; Siemeister, G. ChemMedChem 2013, 8, 1021.
[3]
Zhu, Y.; Loso, M. R.; Watson, G. B.; Sparks, T. C.; Rogers, R. B.; Huang, J. X.; Gerwick, B. C.; Babcock, J. M.; Kelley, D.; Hegde, V. B.; Nugent, B. M.; Renga, J. M.; Denholm, I.; Gorman, K.; DeBoer, G. J.; Hasler, J.; Meade, T.; Thomas, J. D. J. Agric. Food Chem. 2011, 59, 2950.
[4]
(a) Bizet, V.; Hendriks, C. M.; Bolm, C. Chem. Soc. Rev. 2015, 44, 3378.
[4]
(b) Schafer, S.; Wirth, T. Angew. Chem., Int. Ed. 2010, 49, 2786.
[4]
(c) Tota, A.; Zenzola, M.; Chawner, S. J.; John-Campbell, S. S.; Carlucci, C.; Romanazzi, G.; Degennaro, L.; Bull, J. A.; Luisi, R. Chem. Commun. 2016, 53, 348.
[5]
Bolm, C.; Hildebrand, J. P. Tetrahedron Lett. 1998, 39, 5731.
[6]
Bolm, C.; Hildebrand, J. P. J. Org. Chem. 2000, 65, 169.
[7]
Harmata, M.; Hong, X. Synlett 2007, 6, 969.
[8]
Yongpruksa, N.; Calkins, N. L.; Harmata, M. Chem. Commun. 2011, 47, 7665.
[9]
Yang, Q.; Choy, P. Y.; Zhao, Q.; Leung, M. P.; Chan, H. S.; So, C. M.; Wong, W. T.; Kwong, F. Y. J. Org. Chem. 2018, 83, 11369.
[10]
Cho, G. Y.; Remy, P.; Jansson, J.; Moessner, C.; Bolm, C. Org. Lett. 2004, 6, 3293.
[11]
Sedelmeier, J.; Bolm, C. J. Org. Chem. 2005, 70, 6904.
[12]
Vaddula, B.; Leazer, J.; Varma, R. S. Adv. Synth. Catal. 2012, 354, 986.
[13]
Miyasaka, M.; Hirano, K.; Satoh, T.; Kowalczyk, R.; Bolm, C.; Miura, M. Org. Lett. 2011, 13, 359.
[14]
Wang, L.; Priebbenow, D. L.; Dong, W.; Bolm, C. Org. Lett. 2014, 16, 2661.
[15]
Grandhi, G. S.; Dana, S.; Mandal, A.; Baidya, M. Org. Lett. 2020, 22, 2606.
[16]
Moessner, C.; Bolm, C. Org. Lett. 2005, 7, 2667.
[17]
Gupta, S.; Baranwal, S.; Muniyappan, N.; Sabiah, S.; Kandasamy, J. Synthesis 2019, 51, 2171.
[18]
Wang, C.; Zhang, H.; Wells, L. A.; Liu, T.; Meng, T.; Liu, Q.; Walsh, P. J.; Kozlowski, M. C.; Jia, T. Nat. Commun. 2021, 12, 932.
[19]
Kim, J.; Ok, J.; Kim, S.; Choi, W.; Lee, P. H. Org. Lett. 2014, 16, 4602.
[20]
Zhu, H.; Teng, F.; Pan, C.; Cheng, J.; Yu, J.-T. Tetrahedron Lett. 2016, 57, 2372.
[21]
Hande, S.; Mfuh, A.; Throner, S.; Wu, Y.; Ye, Q.; Zheng, X. Tetrahedron Lett. 2019, 60, 151100.
[22]
Wimmer, A.; König, B. Org. Lett. 2019, 21, 2740.
[23]
Liu, D.; Liu, Z. R.; Ma, C.; Jiao, K. J.; Sun, B.; Wei, L.; Lefranc, J.; Herbert, S.; Mei, T. S. Angew. Chem., Int. Ed. 2021, 60, 9444.
[24]
Correa, A.; Bolm, C. Adv. Synth. Catal. 2008, 350, 391.
[25]
Wimmer, A.; König, B. Adv. Synth. Catal. 2018, 360, 3277.
[26]
Aithagani, S. K.; Dara, S.; Munagala, G.; Aruri, H.; Yadav, M.; Sharma, S.; Vishwakarma, R. A.; Singh, P. P. Org. Lett. 2015, 17, 5547.
[27]
Meier, R.; Hog, D.; Lämmermann, H.; Sudau, A.; Rackl, D.; Weinmann, H.; Collins, K.; Wortmann, L.; Candish, L. Synlett 2018, 29, 2679.
[28]
Harmata, M.; Pavri, N. Angew. Chem., Int. Ed. 1999, 38, 2577.
[29]
Harmata, M.; Ghosh, S. K. Org. Lett. 2001, 3, 3321.
[30]
Bolm, C.; Simic, O. J. Am. Chem. Soc. 2001, 123, 3830.
[31]
Bolm, C.; Martin, M.; Simic, O.; Verrucci, M. Org. Lett. 2003, 5, 427.
[32]
Langner, M.; Bolm, C. Angew. Chem., Int. Ed. 2004, 43, 5984.
[33]
Langner, M.; Remy, P.; Bolm, C. Chem.-Eur. J. 2005, 11, 6254.
[34]
Frings, M.; Atodiresei, I.; Wang, Y.; Runsink, J.; Raabe, G.; Bolm, C. Chem.-Eur. J. 2010, 16, 4577.
[35]
Moessner, C.; Bolm, C. Angew. Chem., Int. Ed. 2005, 44, 7564.
[36]
Biosca, M.; P?mies, O.; Diéguez, M. J. Org. Chem. 2019, 84, 8259.
[37]
Harmata, M.; Hong, X. J. Am. Chem. Soc. 2003, 125, 5754.
[38]
Harmata, M.; Hong, X. Org. Lett. 2007, 9, 2701.
[39]
Battula, S. R. K.; Subbareddy, G. V.; Chakravarthy, I. E.; Saravanan, V. RSC Adv. 2016, 6, 55710.
Outlines

/