REVIEWS

Recent Advances for the Construction of Seven-Membered Ring Catalyzed by N-Heterocyclic Carbenes

  • Ting Yao ,
  • Jiayan Li ,
  • Jiaming Wang ,
  • Changgui Zhao
Expand
  • Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875

Received date: 2021-09-14

  Revised date: 2021-11-16

  Online published: 2021-12-02

Supported by

Beijing Natural Science Foundation(2212009); National Natural Science Foundation of China(22171027); Beijing Normal University Startup Funding(312232112)

Abstract

The seven-membered rings represent an important structural motif and have found wide presence in natural products, biologically active molecules and drugs. In contrast to the five- and six-membered rings, the construction of seven- membered ring remains challenging. Thus, the developing efficient strategies for the synthesis of seven-membered rings is very desirable. N-Heterocyclic carbene (NHC) organocatalysis has been recognized as a powerful and unique tool for the quick construction of complex molecular architectures. Nevertheless, whereas significant advances have been made using NHC as catalysis. However, most of these works concentrated on the assembly of five or six-membered rings. This review highlights the developments and new advances for the construction of seven-membered rings catalyzed by NHC. The aim of this review is to provide an overview of this area and inspire synthetic chemists to develop more efficient and novel strategies for the construction of seven-membered rings.

Cite this article

Ting Yao , Jiayan Li , Jiaming Wang , Changgui Zhao . Recent Advances for the Construction of Seven-Membered Ring Catalyzed by N-Heterocyclic Carbenes[J]. Chinese Journal of Organic Chemistry, 2022 , 42(4) : 925 -944 . DOI: 10.6023/cjoc202109020

References

[1]
(a) Ratnayake, R.; Covell, D.; Ransom, T. T.; Gustafson, K. R.; Beutler, J. A. Org. Lett. 2009, 11, 57.
[1]
(b) Cragg, G. M.; Newman, D. J. Phytochem. Rev. 2009, 8, 313.
[1]
(c) Drew, D. P.; Krichau, N.; Reichwald, K.; Simonsen, H. T. Phytochem. Rev. 2009, 8, 581.
[1]
(d) Li, Z.; Nakashige, M.; Chain, W. J. J. Am. Chem. Soc. 2011, 133, 6553.
[1]
(e) Wu, D.; He, Q.; Chen, D.; Ye, J.; Huang, P. Chin. J. Chem. 2019, 37, 315.
[2]
(a) Wang, Y.; Ju, W.; Tian, H.; Tian, W.; Gui, J. J. Am. Chem. Soc. 2018, 140, 9413.
[2]
(b) Amagata, T.; Amagata, A.; Tenney, K.; Valeriote, F. A.; Lobkovsky, E.; Clardy, J.; Crews, P. Org. Lett. 2003, 5, 4393.
[2]
(c) Biellmann, J. F. Chem. Rev. 2003, 103, 2019.
[2]
(d) Sarma, N. S.; Krishna, M. S.; Pasha, S. G.; Rao, T. S. P.; Venkateswarlu, Y.; Parameswaran, P. S. Chem. Rev. 2009, 109, 2803.
[2]
(e) Bansal, R.; Acharya, P. C. Chem. Rev. 2014, 114, 6986.
[2]
(f) Wu, J.; Liu, J.; Fan, J.; Xie, Z.; Qin, H.; Li, C. Chin. J. Chem. 2021, 39, 1247.
[3]
(a) Dokkedal-Silva, V.; Berro, L. F.; Galduróz, J. C. F.; Tufik, S.; Andersen, M. L. Harv. Rev. Psychiatry 2019, 27, 279.
[3]
(b) Huang, Y.; Fu, Z. Heart 2011, 97, 217.
[3]
(c) Cheng, L. H.; Lee, J. C.; Wu, P. C.; Lin, Y. Y.; Chu, Y. H.; Wang, H. W. Rhinology 2019, 57, 268.
[3]
(d) Perna, G.; Alciati, A.; Riva, A.; Micieli, W.; Caldirola, D. Curr. Psychiatry Rep. 2016, 18, 23.
[3]
(e) Shangguan, Y.; Liao, H.; Wang, X. Expert Rev. Neurother. 2015, 15, 733.
[3]
(f) Li, J.; Hao, Z.; Zhang, K.; Wang, L. Chin. J. Org. Chem. 2021, 41, 806. (in Chinese)
[3]
( 李静, 郝振芳, 张凯悦, 王兰芝, 有机化学, 2021, 41, 806.)
[3]
(g) Yang, W.; Huang, Z.; Liu, Y.; Yu, X.; Deng, W. Chin. J. Chem. 2020, 38, 1571.
[3]
(h) Wang, N.; Arulkumar, M.; Chen, X. Y.; Wang, B. W.; Chen, S. H.; Yao, C.; Wang, Z. Y. Chin. J. Org. Chem. 2019, 39, 2771. (in Chinese)
[3]
( 王能, Arulkumar, M., 陈孝云, 王柏文, 陈思鸿, 姚辰, 汪朝阳, 有机化学, 2019, 39, 2771.)
[3]
(i) Zhang, X.; Wang, Y.; Chen, P.; Cai, X.; Jia, Y. Chin. J. Chem. 2021, 39, 1983.
[3]
(j) Hou, B.; Li, J.; Xin, H.; Yang, X.; Gao, H.; Peng, P.; Gao, X. Acta Chim. Sinica 2020, 78, 788. (in Chinese)
[3]
( 侯斌, 李晶, 辛涵申, 杨笑迪, 高洪磊, 彭培珍, 高希珂, 化学学报, 2020, 78, 788.)
[4]
(a) Yet, L. Chem. Rev. 2000, 100, 2963.
[4]
(b) Zhu, C.; Yang, B.; Mai, B. K.; Palazzotto, S.; Qiu, Y.; Gudmundsson, A.; Ricke, A.; Himo, F.; Bäckvall, J. J. Am. Chem. Soc. 2018, 140, 14324.
[4]
(c) Pulido, F. J.; Barbero, A.; Castreño, P. J. Org. Chem. 2011, 76, 5850.
[4]
(d) Ali, B. E.; Okuro, K.; Vasapollo, G.; Alper, H. J. Am. Chem. Soc. 1996, 118, 4264.
[4]
(e) Ishibashi, T.; Ochifuji, N.; Mori, M. Tetrahedron Lett. 1996, 37, 6165.
[4]
(f) Kumari, P.; Liu, W.; Wang, C. J.; Dai, J.; Wang, M. X.; Yang, Q. Q.; Deng, Y. H.; Shao, Z. Chin. J. Chem. 2020, 38, 151.
[5]
(a) Battiste, M. A.; Pelphrey, P. M.; Wright, D. L. Chem.-Eur. J. 2006, 12, 3438.
[5]
(b) Saito, S.; Komagawa, S.; Azumaya, I.; Masuda, M. J. Org. Chem. 2007, 72, 9114.
[5]
(c) Wender, P. A.; Glorius, F.; Husfeld, C. O.; Langkopf, E.; Love, J. A. J. Am. Chem. Soc. 1999, 121, 5348.
[5]
(d) Doerksen, R. S.; Hodík, T.; Hu, G.; Huynh, N. O.; Shuler, W. G.; Krische, M. J. Chem. Rev. 2021, 121, 4045.
[5]
(e) Trost, B. M.; Zuo, Z.; Schultz, J. E. Chemistry 2020, 26, 15354.
[5]
(f) Kuila, B.; Kaur, M.; Singh, P.; Bhargava, G. Eur. J. Org. Chem. 2018, 7, 853.
[6]
(a) Li, X.; Zhang, Z.; Fan, H.; Miao, Y.; Tian, H.; Gu, Y.; Gui, J. J. Am. Chem. Soc. 2021, 143, 4886.
[6]
(b) Davies, H. M. L.; Oldenburg, C. E. M.; McAfee, M. J.; Nordahl, J. G.; Henretta, J. P.; Romines, K. R. Tetrahedron Lett. 1988, 29, 975.
[6]
(c) Nakata, T.; Nomura, S.; Matsukura, H. Tetrahedron Lett. 1996, 37, 213.
[6]
(d) Wang, R. Q.; Shen, C.; Cheng, X.; Wang, Z. F.; Tao, H. Y.; Dong, X. Q.; Wang, C. J. Chin. J. Chem. 2020, 38, 807.
[7]
(a) Flanigan, D. M.; Romanov-Michailidis, F.; White, N. A.; Rovis, T. Chem. Rev. 2015, 115, 9307.
[7]
(b) Menon, R. S.; Biju, A. T.; Nair, V. Chem. Soc. Rev. 2015, 44, 5040.
[7]
(c) He, L.; Jian, T. Y.; Ye, S. J. Org. Chem. 2007, 72, 7466.
[7]
(d) Rong, Z. Q.; Jia, M. Q.; You, S. L. Org. Lett. 2011, 13, 4080.
[7]
(e) Ohmiya, H. ACS Catal. 2020, 10, 6862.
[7]
(f) Nagao, K.; Ohmiya, H. Top Curr. Chem. 2019, 377, 35.
[7]
(g) Patra, A.; Mukherjee, S.; Das, T. K.; Jain, S.; Gonnade, R. G.; Biju, A. T. Angew. Chem., Int. Ed. 2017, 56, 2730.
[7]
(h) Zhang, Z. J.; Wen, Y. H.; Song, J.; Gong, L. Z. Angew. Chem., Int. Ed. 2021, 60, 3268.
[7]
(i) Liu, Q.; Chen, X. Y.; Puttreddy, R.; Rissanen, K.; Enders, D. Angew. Chem., Int. Ed. 2018, 57, 17100.
[7]
(j) Ryan, S. J.; Candish, L.; Lupton, D. W. Chem. Soc. Rev. 2013, 42, 4906.
[7]
(k) Wang, A.; Xiao, Y.; Zhou, Y.; Xu, J.; Liu, H. Chin. J. Org. Chem. 2017, 37, 2590. (in Chinese)
[7]
( 王翱, 肖永龙, 周宇, 徐进宜, 柳红, 有机化学, 2017, 37, 2590.)
[7]
(l) Qu, M.; He, J. Chin. J. Org. Chem. 2011, 31, 1388. (in Chinese)
[7]
( 屈孟男, 何金梅, 有机化学, 2011, 31, 1388.)
[7]
(m) Zhao, C.; Blaszczyk, S. A.; Wang, J. Green Synth. Catal. 2021, 2, 198.
[7]
(n) Chen, X.; Wang, H.; Jin, Z.; Chi, Y. R. Chin. J. Chem. 2020, 38, 1167.
[7]
(o) Liu, Q.; Zhang, X.; Zhao, Z.; Li, X.; Zhang, W. Chin. J. Chem. 2021, 39, 605
[8]
(a) He, J.; Tang, S.; Liu, J.; Su, Y.; Pan, X.; She, X. Tetrahedron 2008, 64, 8797.
[8]
(b) He, J.; Tang, S.; Tang, S.; Liu, J.; Sun, Y.; Pan, X.; She, X. Tetrahedron Lett. 2009, 28, 430.
[9]
(a) Zhang, Y. R.; He, L.; Wu, X.; Shao, P. L.; Ye, S. Org. Lett. 2008, 10, 277.
[9]
(b) Zhang, Y. R.; Lv, H.; Zhou, D.; Ye, S. Chem.-Eur. J. 2008, 14, 8473.
[9]
(c) Shao, P. L.; Chen, X. Y.; Ye, S. Angew. Chem., Int. Ed. 2010, 49, 8412.
[10]
(a) Sarkar, S. D.; Studer, A. Angew. Chem., Int. Ed. 2010, 49, 9266.
[10]
(b) Xie, D.; Shen, D.; Chen, Q.; Zhou, J.; Zeng, X.; Zhong, G. J. Org. Chem. 2016, 81, 6136.
[10]
(c) Wu, S.; Liu, C.; Luo, G.; Jin, Z.; Zheng, P.; Chi, Y. R. Angew. Chem., Int. Ed. 2019, 58, 18410.
[10]
(d) Wang, J.; Li, Y.; Sun, J.; Wang, H.; Jin, Z.; Chi, Y. R. ACS Catal. 2018, 8, 9859.
[10]
(e) Liu, C.; Wu, S.; Xu, J.; Chen, L.; Zheng, P.; Chi, Y. R. Org. Lett. 2019, 21, 9493.
[11]
(a) Guo, F.; Chen, J.; Huang, Y. ACS Catal. 2021, 11, 6316.
[11]
(b) Chen, J.; Meng, S.; Wang, L.; Tang, H.; Huang, Y. Chem. Sci. 2015, 6, 4184.
[11]
(c) Wang, L.; Chen, J.; Huang, Y. Angew. Chem., Int. Ed. 2015, 54, 15414.
[12]
(a) Bie, J.; Lang, M.; Wang, J. Org. Lett. 2018, 20, 5866.
[12]
(b) Yang, G.; Guo, D.; Meng, D.; Wang, J. Nat. Commun. 2019, 10, 3062.
[12]
(c) Xu, K.; Li, W.; Zhu, S.; Zhu, T. Angew. Chem., Int. Ed. 2019, 58, 17625.
[12]
(d) Zhao, Q.; Jiang, R.; You, S. Acta Chim. Sinica 2021, 79, 1107. (in Chinese)
[12]
( 赵庆如, 蒋茹, 游书力, 化学学报, 2021, 79, 1107.)
[13]
(a) He, H.; Liu, W. B.; Dai, L. X.; You, S. L. Angew. Chem., Int. Ed. 2010, 49, 1496.
[13]
(b) Wyatt, P. G.; Allen, M. J.; Chilcott, J.; Hickin, G.; Miller, N. D.; Woollard, P. M. Bioorg. Med. Chem. Lett. 2001, 11, 1301.
[13]
(c) Huang, L.; Dai, L.; You, S. J. Am. Chem. Soc. 2016, 138, 5793.
[14]
Siddiqui, I.; Srivastava, A.; Shamim, S.; Srivastava, A.; Shireen.; Waseem, M.; Singh, R. Synlett 2013, 24, 2586.
[15]
Guo, C.; Sahoo, B.; Daniliuc, C. G.; Glorius, F. J. Am. Chem. Soc. 2014, 136, 17402.
[16]
Wang, M.; Huang, Z.; Xu, J.; Chi, Y. R. J. Am. Chem. Soc. 2014, 136, 1214.
[17]
Wang, L.; Li, S.; Blumel, M.; Philipps, A. R.; Wang, A.; Puttreddy, R.; Rissanen, K.; Enders, D. Angew. Chem., Int. Ed. 2016, 55, 11110.
[18]
Gao, Z. H.; Chen, K. Q.; Zhang, Y.; Kong, L. M.; Li, Y.; Ye, S. J. Org. Chem. 2018, 83, 15225.
[19]
Gao, J. X.; Wang, Y. Org. Biomol. Chem. 2019, 17, 7442.
[20]
Chen, K. Q.; Gao, Z. H.; Ye, S. Org. Chem. Front. 2019, 6, 405.
[21]
Fang, C.; Cao, J.; Sun, K.; Zhu, J. D.; Lu, T.; Du, D. Chem.-Eur. J. 2018, 24, 2103.
[22]
Lang, M.; Wang, J. Eur. J. Org. Chem. 2018, 23, 2958.
[23]
Liu, D.; Hu, Z.; Zhang, Y.; Gong, M.; Fu, Z.; Huang, W. Chem.-Eur. J. 2019, 25, 11223.
[24]
Wu, X.; Zhou, L.; Maiti, R.; Mou, C.; Pan, L.; Chi, Y. R. Angew. Chem., Int. Ed. 2019, 58, 477.
[25]
Zhu, S. Y.; Zhang, Y.; Chen, X. F.; Huang, J.; Shi, S. H.; Hui, X. P. Chem. Commun. 2019, 55, 4363.
[26]
(a) Padwa, A.; Boonsombat, J.; Rashatasakhon, P.; Willis, J. Org. Lett. 2005, 7, 3725.
[26]
(b) Wu, Y. B.; Ni, Z. Y.; Shi, Q. W.; Dong, M.; Kiyota, H.; Gu, Y. C.; Cong, B. Chem. Rev. 2012, 112, 5967.
[26]
(c) Moridi Farimani, M.; Nejad Ebrahimi, S.; Salehi, P.; Bahadori, M. B.; Sonboli, A.; Khavasi, H. R.; Zimmermann, S.; Kaiser, M.; Hamburger, M. J. Nat. Prod. 2013, 76, 1806.
[27]
Yang, L.; Tan, B.; Wang, F.; Zhong, G. J. Org. Chem. 2009, 74, 1744.
[28]
Rose, C. A.; Zeitler, K. Org. Lett. 2010, 12, 4552.
[29]
Lv, H.; Jia, W. Q.; Sun, L. H.; Ye, S. Angew. Chem., Int. Ed. 2013, 52, 8607.
[30]
Izquierdo, J.; Orue, A.; Scheidt, K. A. J. Am. Chem. Soc. 2013, 135, 10634.
[31]
Wang, M.; Rong, Z. Q.; Zhao, Y. Chem. Commun. 2014, 50, 15309.
[32]
Liang, Z. Q.; Gao, Z. H.; Jia, W. Q.; Ye, S. Chem.-Eur. J. 2015, 21, 1868.
[33]
Liang, Z. Q.; Yi, L.; Chen, K. Q.; Ye, S. J. Org. Chem. 2016, 81, 4841.
[34]
Wang, Z. Y.; Ding, Y. L.; Li, S. N.; Cheng, Y. J. Org. Chem. 2016, 81, 11871.
[35]
Li, W.; Yuan, H.; Liu, Z.; Zhang, Z.; Cheng, Y.; Li, P. Adv. Synth. Catal. 2018, 360, 2460.
[36]
Xia, F.; Chen, X. Y.; Ye, S. J. Org. Chem. 2018, 83, 15178.
[37]
(a) Zhao, M.; Zhang, Y. T.; Chen, J.; Zhou, L. Asian J. Org. Chem. 2018, 7, 54.
[37]
(b) Lu, H.; Liu, J. Y.; Li, H. Y.; Xu, P. F. Acta Chim. Sinica 2018, 76, 831. (in Chinese)
[37]
( 鲁鸿, 刘金宇, 李红玉, 许鹏飞, 化学学报, 2018, 76, 831.)
[38]
Guo, C.; Fleige, M.; Janssen-Muller, D.; Daniliuc, C. G.; Glorius, F. J. Am. Chem. Soc. 2016, 138, 7840.
[39]
Singha, S.; Patra, T.; Daniliuc, C. G.; Glorius, F. J. Am. Chem. Soc. 2018, 140, 3551.
[40]
Ding, Y. L.; Zhao, Y. L.; Niu, S. S.; Wu, P.; Cheng, Y. J. Org. Chem. 2020, 85, 612.
Outlines

/