REVIEWS

Recent Progress on 1,2-Metallate Shift Reactions Based on Tetracoordinate Boron Intermediates

  • Feng Zhang ,
  • Lu Zhou ,
  • Kai Yang ,
  • Qiuling Song
Expand
  • a Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry, Fuzhou University, Fuzhou 350108
    b Institute of Next Generation Matter Transformation, College of Materials Science Engineering, Huaqiao University, Xiamen, Fujian 361021

Received date: 2021-10-12

  Revised date: 2021-11-15

  Online published: 2021-12-02

Supported by

National Natural Science Foundation of China(21772046); National Natural Science Foundation of China(2193103)

Abstract

Organoboron compounds are important and versatile synthetic building blocks in synthetic chemistry. Owing to the unique characteristics, they manifest great value in organic synthesis. In view of the versatile transformations, migration reactions of organoboron compounds have attracted great attention from chemists in recent years due to their high efficiency and mild reaction conditions, which are widely utilized for rapid constructions of carbon-carbon and carbon-heteroatom bonds. Recent progress on 1,2-migration reactions based on tetracoordinate boron intermediates is summarized according to various reaction conditions and bond formations.

Cite this article

Feng Zhang , Lu Zhou , Kai Yang , Qiuling Song . Recent Progress on 1,2-Metallate Shift Reactions Based on Tetracoordinate Boron Intermediates[J]. Chinese Journal of Organic Chemistry, 2022 , 42(4) : 1013 -1032 . DOI: 10.6023/cjoc202110017

References

[1]
Mellerup, S. K.; Wang, S. Chem. Soc. Rev. 2019, 48, 3537.
[2]
Bull, S. D.; Davidson, M. G.; van den Elsen, J. M. H.; Fossey, A. T. A.; Jiang, Y.; Kubo, Y.; Marken, F.; Sakurai, K.; Zhao, J.; James, T. D. Acc. Chem. Res. 2012, 46, 312.
[3]
Brooks, W. L. A.; Sumerlin, B. S. Chem. Rev. 2016, 116, 1375.
[4]
(a) Leonori, D.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2015, 54, 1082.
[4]
(b) Gao, G.; Yan, J.; Yang, K.; Chen, F.; Song, Q. Green Chem. 2017, 19, 3997.
[4]
(c) Gao, G.; Kuang, Z.; Song, Q. Org. Chem. Front. 2018, 5, 2249.
[4]
(d) Yang, K.; Zhang, F.; Fang, T.; Zhang, G.; Song, Q. Angew. Chem., Int. Ed. 2019, 58, 13421.
[4]
(e) Shi, D.; Wang, L.; Xia, C.; Liu, C. Chin. J. Org. Chem. 2020, 40, 3605. (in Chinese)
[4]
( 史敦发, 王露, 夏春谷, 刘超, 有机化学, 2020, 40, 3605.)
[4]
(f) Kuang, Z.; Yang, K.; Zhou, Y.; Song, Q. Chem. Commun. 2020, 56, 6469.
[4]
(g) Yang, K.; Zhang, F.; Fang, T.; Li, C.; Li, W.; Song, Q. Nat. Commun. 2021, 12, 441.
[4]
(h) Yang, K.; Song, Q. Acc. Chem. Res. 2021, 54, 2298.
[4]
(i) Zhu, S.; Yan, J.; Zhou, Y.; Yang, K.; Song, Q. Green Synth. Catal. 2021, 2, 299.
[4]
(j) Wang, C.; Zhou, L.; Yang, K.; Zhang, F.; Song, Q. Chin. J. Chem. 2021, 39, 1825.
[5]
(a) Kotha, S.; Lahiri, K.; Kashinath, D. Tetrahedron 2002, 58, 9633.
[5]
(b) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
[5]
(c) Suzuki, A. Angew. Chem., Int. Ed. 2011, 50, 6722.
[5]
(d) Lennox, A. J. J.; Lloyd-Jones, G. C. Chem. Soc. Rev. 2014, 43, 412.
[6]
Brown, H. C.; Subba Rao, B. C. J. Am. Chem. Soc. 1956, 78, 5694.
[7]
(a) Duan, X.; Liu, N.; Wang, J.; Ma, J. Chin. J. Org. Chem. 2019, 39, 661. (in Chinese)
[7]
( 段希焱, 刘宁, 王佳, 马军营, 有机化学, 2019, 39, 661.)
[7]
(b) Ma, X.; Liu, F.; Mo, D. Chin. J. Org. Chem. 2017, 37, 1069. (in Chinese)
[7]
( 马小盼, 刘凤萍, 莫冬亮, 有机化学, 2017, 37, 1069.)
[7]
(c) Munir, I.; Zahoor, A. F.; Rasool, N.; Naqvi, S. A. R. K.; Zia, M.; Ahmad, R. Mol. Diversity 2019, 23, 215.
[7]
(d) Qiao, J. X.; Lam, P. Y. S. Synthesis 2011, 829.
[8]
(a) Candeias, N. R.; Montalbano, F.; Cal, P. M.; Gois, P. M. Chem. Rev. 2015, 42, 6169.
[8]
(b) Petasis, N. A.; Akritopoulou, I. Tetrahedron Lett. 1993, 34, 583.
[8]
(c) Wu, P.; Givskov, M.; Nielsen, T. E. Chem. Rev. 2019, 119, 11245.
[8]
(d) Ming, W.; Liu, X.; Friedrich, A.; Krebs, J.; Budiman, Y. P.; Huang, M.; Marder, T. B. Green Chem. 2020, 22, 2184.
[9]
Hu, Y.; Liu, C. Univ. Chem. 2019, 34, 39.
[10]
Matteson, D. S.; Mah, R. W. H. J. Am. Chem. Soc. 1963, 85, 2599.
[11]
(a) Shimizu, M.; Kitagawa, H.; Kurahashi, T.; Hiyama, T. Angew. Chem., nt. Ed. 2001, 40, 4283.
[11]
(b) Shimizu, M.; Kurahashi, T.; Kitagawa, H.; Shimono, K.; Hiyama, T. J. Organomet. Chem. 2003, 686, 286.
[12]
Murakami, M.; Usui, I.; Hasegawa, M.; Matsuda, T. J. Am. Chem. Soc. 2005, 127, 1366.
[13]
(a) Stymiest, J. L.; French, R. M.; Aggarwal, V. K. Nature 2008, 456, 778.
[13]
(b) Aggarwal, V. K.; Binanzer, M.; Carolina de Ceglie, M.; Gallanti, M.; Glasspoole, B. W.; Kendrick, S. J. F.; Sonawane, R. P.; Vázquez-Romero, A.; Webster, M. P. Org. Lett. 2011, 13,1490.
[13]
(c) Blair, D. J.; Tanini, D.; Bateman, J. M.; Scott, H. K.; Myers, E. L.; Aggarwal, V. K. Chem. Sci. 2017, 8, 2898.
[13]
(d) Fasano, V.; Winter, N.; Noble, A.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2020, 59, 8502.
[14]
He, Z.; Yudin, A. K. J. Am. Chem. Soc. 2011, 133, 13770.
[15]
(a) Wang, L.; Zhang, T.; Sun, W.; He, Z.; Xia, C.; Lan, Y.; Liu, C. J. Am. Chem. Soc. 2017, 139, 5257.
[15]
(b) Shi, D.; Wang, L.; Xia, C.; Liu, C. Angew. Chem.,Int. Ed. 2018, 57, 1031.
[16]
He, Z.; Song, F.; Sun, H. Huang, Y. J. Am. Chem. Soc. 2018, 140, 2693.
[17]
(a) Fordham, J. M.; Grayson, M. N.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2019, 58, 15268.
[17]
(b) Nandakumar, M.; Rubial, B.; Noble, A.; Myers, E. L.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2020, 59,1187.
[17]
(c) Fawcett, A.; Murtaza, A.; Gregson, C. H. U.; Aggarwal, V. K. J. Am. Chem. Soc. 2019, 141, 4573.
[17]
(d) Bennett, S. H.; Fawcett, Alexander.; Denton, E. H. Biberger, Tobias.; Fasano, V.; Aggarwal, V. K. J. Am. Chem. Soc. 2020, 142, 16766.
[17]
(e) Hari, D. P.; Abell, J. C.; Fasano, Valerio.; Aggarwal, V. K. J. Am. Chem. Soc. 2020, 142, 5515.
[18]
Jiao, J.; Wang, X. Angew. Chem.,Int. Ed. 2021, 60, 17088.
[19]
Sharma, H. A.; Essman, J. Z.; Jacobsen, E. N. Science 2021, 374, 752.
[20]
Hillman, M. E. D. J. Am. Chem. Soc. 1962, 84, 4715.
[21]
Zweifel, G.; Arzoumanian, H.; Whitney, C. C. J. Am. Chem. Soc. 1967, 89, 3652.
[22]
Brown, H. C.; Levy, A. B.; and Midland, M. M. J. Am. Chem. Soc. 1975, 97, 5017.
[23]
Buynak, J. D.; Geng, B. Organometallics 1995, 14, 3112.
[24]
Hata, T.; Kitagawa, H.; Masai, H.; Kurahashi, T.; Shimizu, M.; Hiyama, T. Angew. Chem., Int. Ed. 2001, 40, 790.
[25]
Bonet, A.; Odachowski, M.; Leonori, D.; Essafi, S.; Aggarwal, V. K. Nat. Chem. 2014, 6, 584.
[26]
Morinaga, A.; Nagao, K.; Ohmiya, H.; Sawamura, M. Angew. Chem., Int. Ed. 2015, 54, 15859.
[27]
Armstrong, R. J.; García‐Ruiz, C.; Myers, E. L.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2017, 56, 786.
[28]
Yu, S.; Jing, C.; Noble, A.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2020, 59, 3917.
[29]
Fasano, Valerio.; Cid, Jessica.; Procter, R. J.; Ross, E.; Ingleson, M. J. Angew. Chem., Int. Ed. 2018, 57, 13293.
[30]
Tao, Z.; Robb, K. A.; Panger, J. L.; Denmark, S. E. J. Am. Chem. Soc. 2018, 140, 15621.
[31]
Shen, F.; Lu, L.; Shen, Q. Chem. Sci. 2020, 11, 8020.
[32]
You, C.; Studer, A. Angew. Chem., Int. Ed. 2020, 59, 17245.
[33]
Gu, Y.; Duan, Y.; Shen, Y.; Martin, R. Angew. Chem., Int. Ed. 2020, 59, 2061.
[34]
Yukimori, D.; Nagashima, Y.; Wang, C.; Muranaka, A.; Uchiyama, M. J. Am. Chem. Soc. 2019, 141, 9819.
[35]
Yang, K.; Hu, X.; Li.; Qiu, J.; Feng, Q.; Wang, S.; Zhang, G.; Kuang, Z.; Yu, P.; Song, Q. Cell Rep. Phys. Sci. 2020, 1, 100268.
[36]
(a) Barluenga, J.; Tomás-Gamasa, M.; Aznar, F.; Valdés, C. Nat. Chem. 2009, 1, 494.
[36]
(b) Pérez‐Aguilar, M. C.; Valdés, C. Angew. Chem., Int. Ed. 2012, 24, 5953.
[36]
(c) Plaza, M.; Valdés, C. J. Am. Chem. Soc. 2016, 138, 12061.
[36]
(d) Yang, Y.; Tsien, J.; David, A. B.; Hughes, J. M. E.; Merchant, R. R.; Qin, T. J. Am. Chem. Soc. 2021, 143, 471.
[37]
(a) Li, H.; Wang, L.; Zhang, Y.; Wang, J. Angew. Chem., nt. Ed. 2012, 51, 2943.
[37]
(b) Li, H.; Shangguan, X.; Zhang, Z.; Huang, S.; Zhang, Y.; Wang, J. Org. Lett. 2014, 16, 448.
[37]
(c) Wu, G.; Deng, Y.; Wu, C.; Zhang, Y.; Wang, J. Angew. Chem., Int. Ed. 2014, 53, 10510.
[38]
(a) Argintaru, O. A.; Ryu, D. W.; Aron, I.; Molander, G. A. Angew. Chem., Int. Ed. 2013, 52, 13656.
[38]
(b) Molander, G. A.; Ryu, D. W. Angew. Chem., Int. Ed. 2014, 53, 14181.
[39]
(a) Cuenca, A. B.; Cid, J.; García-López, Diego.; Carbó, J. J.; Fernández, E. Org. Biomol. Chem. 2015, 13, 9659.
[39]
(b) Civit, M. G.; Royes, J.; Vogels, C. M.; Westcott, S. A.; Cuenca, A. B.; Fernández, E. Org. Lett. 2016, 18, 3830.
[40]
Wu, K.; Wu, L.; Zhou, C.; Che, C. Angew. Chem., Int. Ed. 2020, 59, 16202.
[41]
Simon, J.; Salzbrunn, S.; Prakash, G. K. S.; Petasis, N. A.; Olah, G. A. J. Org. Chem. 2001, 66, 633.
[42]
Kianmehr, E.; Yahyaee, M.; Tabatabai, K. Tetrahedron Lett. 2007, 48, 2713.
[43]
Zhu, C.; Wang, R.; Falck, J. R. Org. Lett. 2012, 14, 3494.
[44]
Molander, G. A.; Raushel, J.; Ellis, N. M. J. Org. Chem. 2010, 75, 4304.
[45]
Zhu, C.; Li, G.; Ess, D. H.; Falck, J. R.; Ku?rti, L. J. Am. Chem. Soc. 2012, 134, 18253.
[46]
Mlynarski, S. N.; Karns, A. S.; Morken, J. P. J. Am. Chem. Soc. 2012, 134, 16449.
[47]
Xiao, Q.; Tian, L.; Tan, R.; Xia, Y.; Qiu, D.; Zhang, Y.; Wang, J. Org. Lett. 2012, 14, 4230.
[48]
Voth, S.; Hollett, J. W.; McCubbin, J. A. J. Org. Chem. 2015, 80, 2545.
[49]
Roscales, S.; Csaky, A. G. Org. Lett. 2018, 20, 1667.
[50]
Sun, H.-B.; Gong, L.; Tian, Y.-B.; Wu, J.-G.; Zhang, X.; Liu, J.; Fu, Z.; Niu, D. Angew. Chem., Int. Ed. 2018, 57, 9456.
[51]
(a) Liu, X.; Zhu, Q.; Chen, D.; Wang, L.; Jin, Li.; Liu, C. Angew. Chem., Int. Ed. 2020, 59, 2745.
[51]
(b) Li, H.; Yin, G. Chin. J. Org. Chem. 2020, 40, 547. (in Chinese)
[51]
( 李浩阳, 阴国印, 有机化学, 2020, 40, 547.)
[52]
(a) Pelter, A.; Gould, K. J. J. Chem. Soc., Chem. Commun. 1974, 1029.
[52]
(b) Sebald, A.; Wrackmeyer, B. J. Chem. Soc., Chem. Commun. 1983, 309.
[53]
Chan, Y.; Li, N. S.; Deng, M.-Z. Tetrahedron Lett. 1990, 31, 2405.
[54]
(a) Ishida, N.; Miura, T.; Murakami, M. Chem. Commun. 2007, 4381.
[54]
(b) Ishida, N.; Shimamoto, Y.; Murakami, M. Org. Lett. 2009, 11, 5434.
[55]
Lee, M. T.; Goodstein, M. B.; Lalic, G. J. Am. Chem. Soc. 2019, 141, 17086.
[56]
(a) Ishikura, M.; Terashima, M. J. Chem. Soc., Chem. Commun. 1991, 1219.
[56]
(b) Panda, S.; Ready, J. M. J. Am. Chem. Soc. 2017, 139, 6038.
[56]
(c) Panda, S.; Ready, J. M. J. Am. Chem. Soc. 2018, 140, 13242.
[56]
(d) Das, S.; Daniliuc, C. G.; Studer, A. Angew. Chem., Int. Ed. 2018, 57, 4053.
[57]
(a) Zhang, L.; Lovinger, G. J.; Edelstein, E. K.; Szymaniak, A. A.; Chierchia, M. P.; Morken, J. P. Science 2016, 351, 70.
[57]
(b) Chierchia, M.; Law, C.; Morken, J. P. Angew. Chem., Int. Ed. 2017, 56, 11870.
[57]
(c) Lovinger, G. J.; Morken, J. P. J. Am. Chem. Soc. 2017, 139, 17293.
[58]
Jadhav, P. K.; Man, H.-W. J. Am. Chem. Soc. 1997, 119, 846.
[59]
Fawcett, A.; Biberger, T.; Aggarwal, V. K. Nat. Chem. 2019, 11, 117.
[60]
(a) Kischkewitz, M.; Okamoto, K.; Mück-Lichtenfeld, C.; Studer, A. Science 2017, 355, 936.
[60]
(b) Gerleve, C.; Kischkewitz, M.; Studer, A. Angew. Chem., Int. Ed. 2018, 57, 2441.
[60]
(c) Kischkewitz, M.; Gerleve, C.; Studer, A. Org. Lett. 2018, 20, 3666.
[61]
(a) Silvi, M.; Sandford, C.; Aggarwal, V. K. J. Am. Chem. Soc. 2017, 139, 5736.
[61]
(b) Tappin, N. D. C.; Gnägi-Lux, M.; Renaud, P. Chem.-Eur. J. 2018, 24, 11498.
[61]
(c) Zhao, B.; Li, Z.; Wu, Y.; Wang, Y.; Qian, J.; Yuan, Y.; Shi, Z. Angew. Chem., Int. Ed. 2019, 58, 9448.
[62]
(a) Sandford, C.; Aggarwal, V. K. Chem. Commun. 2017, 53, 5481.
[62]
(b) Silvi, M.; Schrof, R.; Noble, A.; Aggarwal, V. K. Chem.-Eur. J. 2018, 24, 4279.
[62]
(c) Davenport, R.; Silvi, M.; Noble, A.; Hosni, Z.; Fey, N.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2020, 132, 6587.
[63]
Silvi, M.; Aggarwal, V. K. J. Am. Chem. Soc. 2019, 141, 9511.
[64]
(a) Wang, D.; Mück-Lichtenfeld, C.; Studer, A. J. Am. Chem. Soc. 2019, 141, 14126.
[64]
(b) Wang, D.; Mück-Lichtenfeld, C.; Studer, A. J. Am. Chem. Soc. 2020, 142, 9119.
Outlines

/