ARTICLES

Ni-Catalyzed Three-Component Coupling Reaction of Butadiene,Aldimines and Alkenylboronic Acids

  • Yurong Zhang ,
  • Han Wang ,
  • Yongjun Mao ,
  • Shiliang Shi
Expand
  • a College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620
    b State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 200032

Received date: 2021-10-29

  Revised date: 2021-11-28

  Online published: 2021-12-02

Supported by

National Natural Science Foundation of China(21690074); National Natural Science Foundation of China(21871288); National Natural Science Foundation of China(91856111); National Natural Science Foundation of China(21821002); National Natural Science Foundation of China(22171280); Strategic Priority Research Program of the Chinese Academy of Sciences(XDB20000000)

Abstract

A Ni-catalyzed three-component coupling reaction of alkenylboronic acids, aldimines, and 1,3-butadiene for rapid synthesis of homoallylic amines bearing a skipped diene moiety is disclosed. This reaction represents a rare example for modular 1,4-dicarbofunctionalization of 1,3-butadiene, an abundant feedstock chemical. This protocol furnishes a diverse variety of (E)-homoallylic amines in high yields with excellent regio- and stereo-selectivity. The mild and base-free reaction condition enables excellent functional group tolerance and broad scope for aldimine and alkenylboronic acid coupling partners.

Cite this article

Yurong Zhang , Han Wang , Yongjun Mao , Shiliang Shi . Ni-Catalyzed Three-Component Coupling Reaction of Butadiene,Aldimines and Alkenylboronic Acids[J]. Chinese Journal of Organic Chemistry, 2022 , 42(4) : 1198 -1209 . DOI: 10.6023/cjoc202110042

References

[1]
(a) Nugent, T. C. Chiral Amine Synthesis: Methods, Developments and Applications, Wiley-VCH, Weinheim, 2010.
[1]
(b) Lawrence, S. A. Amines: Synthesis, Properties and Applications, Cambridge University Press, Cambridge, U. K., 2004.
[1]
(c) Puentes, C. O.; Kouznetsov, V. J. J. Heterocycl. Chem. 2002, 39, 595.
[2]
(a) Yus, M.; Gonzalez-Gomez, J. C.; Foubelo, F. Chem. Rev. 2011, 111, 7774.
[2]
(b) Yus, M.; González-Gómez, J. C.; Foubelo, F. Chem. Rev. 2013, 113, 5595.
[2]
(c) Huo, H.-X.; Duvall, J. R.; Huang, M.-Y.; Hong, R. Org. Chem. Front. 2014, 1, 303.
[3]
(a) Dahlmann, M.; Grub, J.; Löser, E. Butadiene, Wiley-VCH, Weinheim, Germany, 2011.
[3]
(b) Weitz, H. M.; Löser, E. Isoprene, Wiley-VCH, Weinheim, Germany, 2000.
[4]
(a) Wu, Z.; Zhang, W. Chin. J. Org. Chem. 2017, 37, 2250. (in Chinese)
[4]
( 吴正兴, 张万斌, 有机化学, 2017, 37, 2250.)
[4]
(b) Xiong, Y.; Sun, Y.-W.; Zhang, G.-Z. Tetrahedron Lett. 2018, 59, 347.
[4]
(c) Holmes, M.; Schwartz, L. A.; Krische, M. J. Chem. Rev. 2018, 118, 6026.
[4]
(d) Wang, P.-S.; Shen, M.-L.; Gong, L.-Z. Synthesis 2018, 50, 956.
[4]
(e) Perry, G. J. P.; Jia, T.; Procter, D. J. ACS Catal. 2020, 10, 1485.
[4]
(f) Wang, X.-X.; Lu, X.; Li, Y.; Wang, J.-W.; Fu, Y. Sci. China Chem. 2020, 63, 1586.
[4]
(g) Zhang, H.; Gu, Q.; You, S.; Chin. J. Org. Chem. 2019, 39, 15. (in Chinese)
[4]
( 张慧君, 顾庆, 游书力, 有机化学, 2019, 39, 15.)
[5]
Kimura, M.; Miyachi, A.; Kojima, K.; Tanaka, S.; Tamaru, Y. J. Am. Chem. Soc. 2004, 126, 14360.
[6]
(a) Chen, T.-Y.; Tsutsumi, R.; Montgomery, T. P.; Volchkov, I.; Krische, M. J. J. Am. Chem. Soc. 2015, 137, 1798.
[6]
(b) Schmitt, D. C.; Lee, J.; Dechert-Schmitt, A.-M. R.; Yamaguchi, E.; Krische, M. J. Chem. Commun. 2013, 49, 6096.
[6]
(c) Zhu, S.; Lu, X.; Luo, Y.; Zhang, W.; Jiang, H.; Yan, M.; Zeng, W. Org. Lett. 2013, 15, 1440.
[7]
(a) Li, C.; Liu, R.-Y.; Jesikiewicz, L. T.; Yang, Y.; Liu, P.; Buchwald, S. L. J. Am. Chem. Soc. 2019, 141, 5062.
[7]
(b) Jiang, L.; Cao, P.; Wang, M.; Chen, B.; Wang, B.; Liao, J. Angew. Chem., nt. Ed. 2016, 55, 13854.
[7]
(c) Li, M.; Wang, J.; Meng, F. Org. Lett. 2018, 20, 7288.
[7]
(d) Fu, B.; Yuan, X.; Li, Y.; Wang, Y.; Zhang, Q.; Xiong, T.; Zhang, Q. Org. Lett. 2019, 21, 3576.
[7]
(e) Gui, Y.-Y.; Hu, N.; Chen, X.-W.; Liao, L.-L.; Ju, T.; Ye, J.-H.; Zhang, Z.; Li, J.; Yu, D.-G. J. Am. Chem. Soc. 2017, 139, 17011.
[8]
(a) Kojima, K.; Kimura, M.; Tamaru, Y. Chem. Commun. 2005, 4717.
[8]
(b) Kimura, M.; Kojima, K.; Tatsuyama, Y.; Tamaru, Y. J. Am. Chem. Soc. 2006, 128, 6332.
[8]
(c) Kimura, M.; Tatsuyama, Y.; Kojima, K.; Tamaru, Y. Org. Lett. 2007, 9, 1871.
[9]
Li, Y.-Q.; Shi, S.-L. Organometallics 2021, 40, 2345.
[10]
(a) McCammant, M. S.; Liao, L.; Sigman, M. S. J. Am. Chem. Soc. 2013, 135, 4167.
[10]
(b) Tao, Z.-L.; Adili, A.; Shen, H.-C.; Han, Z.-Y.; Gong, L.-Z. Angew. Chem. Int. Ed. 2016, 55, 4322.
[10]
(c) Tortajada, A.; Ninokata, R.; Martin, R. J. Am. Chem. Soc. 2018, 140, 2050.
[10]
(d) Boerth, J. A.; Maity, S.; Williams, S. K.; Mercado, B. Q.; Ellman, J. A. Nat. Catal. 2018, 1, 673.
[10]
(e) Xiong, Y.; Zhang, G. J. Am. Chem. Soc. 2018, 140, 2735.
[10]
(f) Yang, J.; Ji, D.-W.; Hu, Y.-C.; Min, X.-T.; Zhou, X.; Chen, Q.-A. Chem. Sci. 2019, 10, 9560.
[10]
(g) Yang, J.; Liu, J.; Neumann, H.; Franke, R.; Jackstell, R.; Beller, M. Science 2019, 366, 1514.
[10]
(h) Li, Y.-Q.; Chen, G.; Shi, S.-L. Org. Lett. 2021, 23, 2571.
[11]
(a) Denmark, S. E.; Guagnano, V.; Dixon, J. A.; Stolle, A. J. Org. Chem. 1997, 62, 4610.
[11]
(b) Lin, H.-C.; Wang, P.-S.; Tao, Z.-L.; Chen, Y.-G.; Han, Z.-Y.; Gong, L.-Z. J. Am. Chem. Soc. 2016, 138, 14354.
[11]
(c) Fan, L.-F.; Luo, S.-W.; Chen, S.-S.; Wang, T.-C.; Wang, P.-S.; Gong, L.-Z. Angew. Chem., nt. Ed. 2019, 58, 16806.
[12]
(a) Shinohara, Y.; Kudo, F.; Eguchit, T. J. Am. Chem. Soc. 2011, 133, 18134.
[12]
(b) Tang, W.; Prusov, E. V. Angew. Chem., nt. Ed. 2012, 51, 3401.
[12]
(c) Winter, P.; Hiller, W.; Christmann, M. Angew. Chem., nt. Ed. 2012, 51, 3396.
[13]
(a) Lian, X.; Chen, W.; Dang, L.; Li, Y.; Ho, C.-Y. Angew. Chem., nt. Ed. 2017, 56, 9048.
[13]
(b) Jing, S.-M.; Balasanthiran, V.; Pagar, V.; Gallucci, J. C.; RajanBabu, T.-V. J. Am. Chem. Soc. 2017, 139, 18034.
[13]
(c) Schmidt, V.-A.; Kennedy, C.-R.; Bezdek, M.-J.; Chirik, P.-J. J. Am. Chem. Soc. 2018, 140, 3443.
[13]
(d) Bohn, M.-A.; Schmidt, A.; Hilt, G.; Dindarog?lu, M.; Schmalz, H.-G. Angew. Chem., nt. Ed. 2011, 50, 9689.
[14]
(a) Kimura, M.; Ezoe, A.; Mori, M.; Tamaru, Y. J. Am. Chem. Soc. 2005, 127, 201.
[14]
(b) Li, Y.-Q.; Shi, S.-L. Chin. J. Org. Chem. 2021, 41, 1939. (in Chinese)
[14]
( 李雨青, 施世良, 有机化学, 2021, 41, 1939.)
[15]
(a) McCammant, M.-S.; Liao, L.; Sigman, M.-S. J. Am. Chem. Soc. 2013, 135, 4167.
[15]
(b) McCammant, M.-S.; Sigman, M.-S. Chem. Sci. 2015, 6, 1355.
[15]
(c) Wang, C.-G.; Zhang, Y.; Wang, S.; Chen, B.; Li, Y.; Gao, Y.; Hu, P.; Wang, B.-Q.; Cao, P. Org. Lett. 2021, 23, 535.
[15]
(d) Pang, X.; Zhao, Z.-Z.; Wei, X.-X.; Qi, L.; Xu, G.-L.; Duan, J.; Liu, X.-Y.; Shu, X.-Z. J. Am. Chem. Soc. 2021, 143, 4536.
[16]
(a) Bin, H.-Y.; Wei, X.; Zi, J.; Zuo, Y.-J.; Wang, T.-C.; Zhong, C.-M. ACS Catal. 2015, 5, 6670.
[16]
(b) Xu, G.; Zhao, H.; Fu, B.; Cang, A.; Zhang, G.; Zhang, Q.; Xiong, T.; Zhang, Q. Angew. Chem., nt. Ed. 2017, 56, 13130.
[16]
(c) Song, F.; Wang, F.; Guo, L. Feng, X.; Zhang, Y.; Chu, L. Angew. Chem., nt. Ed. 2020, 59, 177.
[16]
(d) Ma, W.-Y.; Han, G.-Y.; Kang, S.-l.; Pang, X.-B.; Liu, X.-Y.; Shu, X.-Z. J. Am. Chem. Soc. 2021, 143, 15930.
[17]
(a) Montgomery, L. Angew. Chem., nt. Ed. 2004, 43, 3890.
[17]
(b) Standley, E.-A.; Tasker, S.-Z.; Jensen, K.-L.; Jamison, T.-F. Acc. Chem. Res. 2015, 48, 1503.
[17]
(c) Hoshimoto, Y.; Ohashi, M.; Ogoshi, S. Acc. Chem. Res. 2015, 48, 1746.
[18]
(a) Lennox, A.-J.; Lloyd-Jones, G.-C. Angew. Chem., nt. Ed. 2013, 52, 7362.
[18]
(b) Carrow, B.-P.; Hartwig, J.-F. J. Am. Chem. Soc. 2011, 133, 2116.
[18]
(c) Thomas, A.-A.; Denmark, S.-E. Science 2016, 352, 329.
[18]
(d) Malapit, C. A.; Bour, J. R.; Brigham, C. E.; Sanford, M. S. Nature 2018, 563, 100.
[19]
Kimura, M.; Matsuo, S.; Shibata, K.; Tamaru, Y. Angew. Chem., nt. Ed. 1999, 38, 3386.
[20]
(a) Zhang, W.-B.; Yang, X.-T.; Ma, J.-B.; Su, Z.-M.; Shi, S.-L. J. Am. Chem. Soc. 2019, 141, 5628.
[20]
(b) Cai, Y.; Zhang, J.-W.; Li, F.; Liu, J.-M.; Shi, S.-L. ACS Catal. 2019, 9, 1.
[20]
(c) Cai, Y.; Ye, X.; Liu, S.; Shi, S.-L. Angew. Chem., nt. Ed. 2019, 58, 13433.
[20]
(d) Shen, D.; Zhang, W.-B.; Li, Z.; Shi, S.-L.; Xu, Y. Adv. Synth. Catal. 2020, 362, 1125.
[20]
(e) Li, Y.-Q.; Li, F.; Shi, S.-L. Chin. J. Chem. 2020, 38, 1035.
[20]
(f) Cai, Y.; Ruan, L.-X.; A. Rahman; Shi, S.-L. Angew. Chem., nt. Ed. 2021, 60, 5262.
[20]
(g) Wang, Z.-C.; Gao, J.; Cai, Y.; Ye, X.; Shi, S.-L. CCS Chem. 2021, 3, 1445.
[20]
(h) Wang, Z.-C.; Xie, P.-P.; Xu, Y.; Hong, X.; Shi, S.-L. Angew. Chem., nt. Ed. 2021, 60, 16077.
[20]
(i) Cai, Y.; Shi, S.-L. J. Am. Chem. Soc. 2021, 143, 11963.
[20]
(j) Zhang, W.-B.; Chen, G.; Shi, S.-L. J. Am. Chem. Soc. 2021, 2022, 144, 130.
Outlines

/