Chinese Journal of Organic Chemistry >
Ni-Catalyzed Three-Component Coupling Reaction of Butadiene,Aldimines and Alkenylboronic Acids
Received date: 2021-10-29
Revised date: 2021-11-28
Online published: 2021-12-02
Supported by
National Natural Science Foundation of China(21690074); National Natural Science Foundation of China(21871288); National Natural Science Foundation of China(91856111); National Natural Science Foundation of China(21821002); National Natural Science Foundation of China(22171280); Strategic Priority Research Program of the Chinese Academy of Sciences(XDB20000000)
A Ni-catalyzed three-component coupling reaction of alkenylboronic acids, aldimines, and 1,3-butadiene for rapid synthesis of homoallylic amines bearing a skipped diene moiety is disclosed. This reaction represents a rare example for modular 1,4-dicarbofunctionalization of 1,3-butadiene, an abundant feedstock chemical. This protocol furnishes a diverse variety of (E)-homoallylic amines in high yields with excellent regio- and stereo-selectivity. The mild and base-free reaction condition enables excellent functional group tolerance and broad scope for aldimine and alkenylboronic acid coupling partners.
Yurong Zhang , Han Wang , Yongjun Mao , Shiliang Shi . Ni-Catalyzed Three-Component Coupling Reaction of Butadiene,Aldimines and Alkenylboronic Acids[J]. Chinese Journal of Organic Chemistry, 2022 , 42(4) : 1198 -1209 . DOI: 10.6023/cjoc202110042
[1] | (a) Nugent, T. C. Chiral Amine Synthesis: Methods, Developments and Applications, Wiley-VCH, Weinheim, 2010. |
[1] | (b) Lawrence, S. A. Amines: Synthesis, Properties and Applications, Cambridge University Press, Cambridge, U. K., 2004. |
[1] | (c) Puentes, C. O.; Kouznetsov, V. J. J. Heterocycl. Chem. 2002, 39, 595. |
[2] | (a) Yus, M.; Gonzalez-Gomez, J. C.; Foubelo, F. Chem. Rev. 2011, 111, 7774. |
[2] | (b) Yus, M.; González-Gómez, J. C.; Foubelo, F. Chem. Rev. 2013, 113, 5595. |
[2] | (c) Huo, H.-X.; Duvall, J. R.; Huang, M.-Y.; Hong, R. Org. Chem. Front. 2014, 1, 303. |
[3] | (a) Dahlmann, M.; Grub, J.; Löser, E. Butadiene, Wiley-VCH, Weinheim, Germany, 2011. |
[3] | (b) Weitz, H. M.; Löser, E. Isoprene, Wiley-VCH, Weinheim, Germany, 2000. |
[4] | (a) Wu, Z.; Zhang, W. Chin. J. Org. Chem. 2017, 37, 2250. (in Chinese) |
[4] | ( 吴正兴, 张万斌, 有机化学, 2017, 37, 2250.) |
[4] | (b) Xiong, Y.; Sun, Y.-W.; Zhang, G.-Z. Tetrahedron Lett. 2018, 59, 347. |
[4] | (c) Holmes, M.; Schwartz, L. A.; Krische, M. J. Chem. Rev. 2018, 118, 6026. |
[4] | (d) Wang, P.-S.; Shen, M.-L.; Gong, L.-Z. Synthesis 2018, 50, 956. |
[4] | (e) Perry, G. J. P.; Jia, T.; Procter, D. J. ACS Catal. 2020, 10, 1485. |
[4] | (f) Wang, X.-X.; Lu, X.; Li, Y.; Wang, J.-W.; Fu, Y. Sci. China Chem. 2020, 63, 1586. |
[4] | (g) Zhang, H.; Gu, Q.; You, S.; Chin. J. Org. Chem. 2019, 39, 15. (in Chinese) |
[4] | ( 张慧君, 顾庆, 游书力, 有机化学, 2019, 39, 15.) |
[5] | Kimura, M.; Miyachi, A.; Kojima, K.; Tanaka, S.; Tamaru, Y. J. Am. Chem. Soc. 2004, 126, 14360. |
[6] | (a) Chen, T.-Y.; Tsutsumi, R.; Montgomery, T. P.; Volchkov, I.; Krische, M. J. J. Am. Chem. Soc. 2015, 137, 1798. |
[6] | (b) Schmitt, D. C.; Lee, J.; Dechert-Schmitt, A.-M. R.; Yamaguchi, E.; Krische, M. J. Chem. Commun. 2013, 49, 6096. |
[6] | (c) Zhu, S.; Lu, X.; Luo, Y.; Zhang, W.; Jiang, H.; Yan, M.; Zeng, W. Org. Lett. 2013, 15, 1440. |
[7] | (a) Li, C.; Liu, R.-Y.; Jesikiewicz, L. T.; Yang, Y.; Liu, P.; Buchwald, S. L. J. Am. Chem. Soc. 2019, 141, 5062. |
[7] | (b) Jiang, L.; Cao, P.; Wang, M.; Chen, B.; Wang, B.; Liao, J. Angew. Chem., nt. Ed. 2016, 55, 13854. |
[7] | (c) Li, M.; Wang, J.; Meng, F. Org. Lett. 2018, 20, 7288. |
[7] | (d) Fu, B.; Yuan, X.; Li, Y.; Wang, Y.; Zhang, Q.; Xiong, T.; Zhang, Q. Org. Lett. 2019, 21, 3576. |
[7] | (e) Gui, Y.-Y.; Hu, N.; Chen, X.-W.; Liao, L.-L.; Ju, T.; Ye, J.-H.; Zhang, Z.; Li, J.; Yu, D.-G. J. Am. Chem. Soc. 2017, 139, 17011. |
[8] | (a) Kojima, K.; Kimura, M.; Tamaru, Y. Chem. Commun. 2005, 4717. |
[8] | (b) Kimura, M.; Kojima, K.; Tatsuyama, Y.; Tamaru, Y. J. Am. Chem. Soc. 2006, 128, 6332. |
[8] | (c) Kimura, M.; Tatsuyama, Y.; Kojima, K.; Tamaru, Y. Org. Lett. 2007, 9, 1871. |
[9] | Li, Y.-Q.; Shi, S.-L. Organometallics 2021, 40, 2345. |
[10] | (a) McCammant, M. S.; Liao, L.; Sigman, M. S. J. Am. Chem. Soc. 2013, 135, 4167. |
[10] | (b) Tao, Z.-L.; Adili, A.; Shen, H.-C.; Han, Z.-Y.; Gong, L.-Z. Angew. Chem. Int. Ed. 2016, 55, 4322. |
[10] | (c) Tortajada, A.; Ninokata, R.; Martin, R. J. Am. Chem. Soc. 2018, 140, 2050. |
[10] | (d) Boerth, J. A.; Maity, S.; Williams, S. K.; Mercado, B. Q.; Ellman, J. A. Nat. Catal. 2018, 1, 673. |
[10] | (e) Xiong, Y.; Zhang, G. J. Am. Chem. Soc. 2018, 140, 2735. |
[10] | (f) Yang, J.; Ji, D.-W.; Hu, Y.-C.; Min, X.-T.; Zhou, X.; Chen, Q.-A. Chem. Sci. 2019, 10, 9560. |
[10] | (g) Yang, J.; Liu, J.; Neumann, H.; Franke, R.; Jackstell, R.; Beller, M. Science 2019, 366, 1514. |
[10] | (h) Li, Y.-Q.; Chen, G.; Shi, S.-L. Org. Lett. 2021, 23, 2571. |
[11] | (a) Denmark, S. E.; Guagnano, V.; Dixon, J. A.; Stolle, A. J. Org. Chem. 1997, 62, 4610. |
[11] | (b) Lin, H.-C.; Wang, P.-S.; Tao, Z.-L.; Chen, Y.-G.; Han, Z.-Y.; Gong, L.-Z. J. Am. Chem. Soc. 2016, 138, 14354. |
[11] | (c) Fan, L.-F.; Luo, S.-W.; Chen, S.-S.; Wang, T.-C.; Wang, P.-S.; Gong, L.-Z. Angew. Chem., nt. Ed. 2019, 58, 16806. |
[12] | (a) Shinohara, Y.; Kudo, F.; Eguchit, T. J. Am. Chem. Soc. 2011, 133, 18134. |
[12] | (b) Tang, W.; Prusov, E. V. Angew. Chem., nt. Ed. 2012, 51, 3401. |
[12] | (c) Winter, P.; Hiller, W.; Christmann, M. Angew. Chem., nt. Ed. 2012, 51, 3396. |
[13] | (a) Lian, X.; Chen, W.; Dang, L.; Li, Y.; Ho, C.-Y. Angew. Chem., nt. Ed. 2017, 56, 9048. |
[13] | (b) Jing, S.-M.; Balasanthiran, V.; Pagar, V.; Gallucci, J. C.; RajanBabu, T.-V. J. Am. Chem. Soc. 2017, 139, 18034. |
[13] | (c) Schmidt, V.-A.; Kennedy, C.-R.; Bezdek, M.-J.; Chirik, P.-J. J. Am. Chem. Soc. 2018, 140, 3443. |
[13] | (d) Bohn, M.-A.; Schmidt, A.; Hilt, G.; Dindarog?lu, M.; Schmalz, H.-G. Angew. Chem., nt. Ed. 2011, 50, 9689. |
[14] | (a) Kimura, M.; Ezoe, A.; Mori, M.; Tamaru, Y. J. Am. Chem. Soc. 2005, 127, 201. |
[14] | (b) Li, Y.-Q.; Shi, S.-L. Chin. J. Org. Chem. 2021, 41, 1939. (in Chinese) |
[14] | ( 李雨青, 施世良, 有机化学, 2021, 41, 1939.) |
[15] | (a) McCammant, M.-S.; Liao, L.; Sigman, M.-S. J. Am. Chem. Soc. 2013, 135, 4167. |
[15] | (b) McCammant, M.-S.; Sigman, M.-S. Chem. Sci. 2015, 6, 1355. |
[15] | (c) Wang, C.-G.; Zhang, Y.; Wang, S.; Chen, B.; Li, Y.; Gao, Y.; Hu, P.; Wang, B.-Q.; Cao, P. Org. Lett. 2021, 23, 535. |
[15] | (d) Pang, X.; Zhao, Z.-Z.; Wei, X.-X.; Qi, L.; Xu, G.-L.; Duan, J.; Liu, X.-Y.; Shu, X.-Z. J. Am. Chem. Soc. 2021, 143, 4536. |
[16] | (a) Bin, H.-Y.; Wei, X.; Zi, J.; Zuo, Y.-J.; Wang, T.-C.; Zhong, C.-M. ACS Catal. 2015, 5, 6670. |
[16] | (b) Xu, G.; Zhao, H.; Fu, B.; Cang, A.; Zhang, G.; Zhang, Q.; Xiong, T.; Zhang, Q. Angew. Chem., nt. Ed. 2017, 56, 13130. |
[16] | (c) Song, F.; Wang, F.; Guo, L. Feng, X.; Zhang, Y.; Chu, L. Angew. Chem., nt. Ed. 2020, 59, 177. |
[16] | (d) Ma, W.-Y.; Han, G.-Y.; Kang, S.-l.; Pang, X.-B.; Liu, X.-Y.; Shu, X.-Z. J. Am. Chem. Soc. 2021, 143, 15930. |
[17] | (a) Montgomery, L. Angew. Chem., nt. Ed. 2004, 43, 3890. |
[17] | (b) Standley, E.-A.; Tasker, S.-Z.; Jensen, K.-L.; Jamison, T.-F. Acc. Chem. Res. 2015, 48, 1503. |
[17] | (c) Hoshimoto, Y.; Ohashi, M.; Ogoshi, S. Acc. Chem. Res. 2015, 48, 1746. |
[18] | (a) Lennox, A.-J.; Lloyd-Jones, G.-C. Angew. Chem., nt. Ed. 2013, 52, 7362. |
[18] | (b) Carrow, B.-P.; Hartwig, J.-F. J. Am. Chem. Soc. 2011, 133, 2116. |
[18] | (c) Thomas, A.-A.; Denmark, S.-E. Science 2016, 352, 329. |
[18] | (d) Malapit, C. A.; Bour, J. R.; Brigham, C. E.; Sanford, M. S. Nature 2018, 563, 100. |
[19] | Kimura, M.; Matsuo, S.; Shibata, K.; Tamaru, Y. Angew. Chem., nt. Ed. 1999, 38, 3386. |
[20] | (a) Zhang, W.-B.; Yang, X.-T.; Ma, J.-B.; Su, Z.-M.; Shi, S.-L. J. Am. Chem. Soc. 2019, 141, 5628. |
[20] | (b) Cai, Y.; Zhang, J.-W.; Li, F.; Liu, J.-M.; Shi, S.-L. ACS Catal. 2019, 9, 1. |
[20] | (c) Cai, Y.; Ye, X.; Liu, S.; Shi, S.-L. Angew. Chem., nt. Ed. 2019, 58, 13433. |
[20] | (d) Shen, D.; Zhang, W.-B.; Li, Z.; Shi, S.-L.; Xu, Y. Adv. Synth. Catal. 2020, 362, 1125. |
[20] | (e) Li, Y.-Q.; Li, F.; Shi, S.-L. Chin. J. Chem. 2020, 38, 1035. |
[20] | (f) Cai, Y.; Ruan, L.-X.; A. Rahman; Shi, S.-L. Angew. Chem., nt. Ed. 2021, 60, 5262. |
[20] | (g) Wang, Z.-C.; Gao, J.; Cai, Y.; Ye, X.; Shi, S.-L. CCS Chem. 2021, 3, 1445. |
[20] | (h) Wang, Z.-C.; Xie, P.-P.; Xu, Y.; Hong, X.; Shi, S.-L. Angew. Chem., nt. Ed. 2021, 60, 16077. |
[20] | (i) Cai, Y.; Shi, S.-L. J. Am. Chem. Soc. 2021, 143, 11963. |
[20] | (j) Zhang, W.-B.; Chen, G.; Shi, S.-L. J. Am. Chem. Soc. 2021, 2022, 144, 130. |
/
〈 |
|
〉 |