ARTICLES

An Efficient Three-Component Tandem Approach for the Synthesis of Imidazoheterocycle-Hydrazine Derivatives under Mild Conditions

  • Huijie Qiao ,
  • Liting Yang ,
  • Ya Chen ,
  • Jialin Wang ,
  • Wuxuan Sun ,
  • Haobo Dong ,
  • Yunwei Wang
Expand
  • a Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007
    b School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007

Received date: 2021-10-12

  Revised date: 2021-11-14

  Online published: 2021-12-08

Supported by

Natural Science Foundation of Henan Province(202300410515); Natural Science Foundation of Henan Province(212300410318)

Abstract

An three-component tandem reaction for the synthesis of imidazo[1,2-a]pyridine-hydrazines was accomplished with the easily available formyl methyl bromides, pyridin-2-amines and azodiformates. This tandem reaction process includes the generation of imidazo[1,2-a]pyridines followed by C(3)—H hydrazination in a sequential way, instead of the classical step-by-step methods. The approach features simple operation, mild conditions (transition-metal-free and low reaction temperature) as well as good tolerance of substrates. Note that formyl methyl bromides and pyridin-2-amines bearing electron-donating groups are benefit for this reaction, affording target products in excellent yields.

Cite this article

Huijie Qiao , Liting Yang , Ya Chen , Jialin Wang , Wuxuan Sun , Haobo Dong , Yunwei Wang . An Efficient Three-Component Tandem Approach for the Synthesis of Imidazoheterocycle-Hydrazine Derivatives under Mild Conditions[J]. Chinese Journal of Organic Chemistry, 2022 , 42(4) : 1188 -1197 . DOI: 10.6023/cjoc202110015

References

[1]
(a) Enguehard-Gueiffier, C.; Gueiffier, A. Mini-Rev. Med. Chem. 2007, 7, 888.
[1]
(b) Dyminska, L. Bioorg. Med. Chem. 2015, 23, 6087.
[2]
(a) Kamal, A.; Reddy, J. S.; Ramaiah, M. J.; Dastagiri, D.; Bharathi, E. V.; Sagar, M. V. P.;Pushpavalli, S. N. C. V. L.; Ray, P.; Pal- Bhadra, M. Med. Chem. Commun. 2010, 1, 355.
[2]
(b) Kim, O.; Jeong, Y.; Lee, H.; Hong, S. S.; Hong, S. J. Med. Chem. 2011, 54, 2455.
[2]
(c) El-Sayed, W. M.; Hussin, W. A.; Al-Faiyz, Y. S.; Ismail, M. A. Eur. J. Pharmacol. 2013, 715, 212.
[3]
Lacerda, R. B.; de Lima, C. K. F.; da Silva, L. L.; Romeiro, N. C.; Miranda, A. L.; Barreiro, E. J.; Fraga, C. A. Bioorg. Med. Chem. 2009, 17, 74.
[4]
Kaminski, J. J.; Doweyko, A. M. J. Med. Chem. 1997, 40, 427.
[5]
(a) AlTel, T. H.; Al-Qawasmeh, R. A.; Zaarour, R. Eur. J. Med. Chem. 2011, 46, 1874.
[5]
(b) Shukla, N. M.; Salunke, D. B.; Yoo, E.; Mutz, C. A.; Balakrishna, R.; David, S. A. Bioorg. Med. Chem. 2012, 20, 5850.
[6]
Rival, Y.; Grassy, G.; Taudon, A.; Ecalle, R. Eur. J. Med. Chem. 1991, 26, 13.
[7]
(a) Lhassani, M.; Chavignon, O.; Chezal, J. M.; Teulade, J. C.; Chapat, J. P.; Snoeck, R.; Andrei, G.; Balzarini, J.; De Clercq, E.; Gueiffier, A. Eur. J. Med. Chem. 1999, 34, 271.
[7]
(b) Gudmundsson, K. S.; Williams, J. D.; Drach, J. C.; Townsend, L. B. J. Med. Chem. 2003, 46, 1449.
[7]
(c) Gudmundsson, K. S.; Johns, B. A. Bioorg. Med. Chem. Lett. 2007, 17, 2735.
[7]
(d) Véron, J. B.; Allouchi, H.; Enguehard-Gueiffier, C.; Snoeck, R.; Andrei, G.; De Clercq, E.; Gueiffier, A. Bioorg. Med. Chem. 2008, 16, 9536.
[8]
(a) Almirante, L.; Polo, L.; Mugnaini, A.; Provinciali, E.; Rugarli, P.; Biancotti, A.; Gamba, A.; Murmann, W. J. Med. Chem. 1965, 8, 305.
[8]
(b) Belohlavek, D.; Malfertheiner, P. Scand. J. Gastroenterol. Suppl. 1979, 54, 44.
[8]
(c) Langer, S. Z.; Arbilla, S.; Benavides, J.; Scatton, B. Adv. Biochem. Psychopharmacol. 1990, 46, 61.
[8]
(d) Uemura, Y.; Tanaka, S.; Ida, S.; Yuzuriha, T. J. Pharm. Pharmacol. 1993, 45, 1077.
[8]
(e) Pellón, R.; Ruíz, A.; Lamas, E.; Rodríguez, C. Behav. Pharmacol. 2007, 18, 81.
[8]
(f) Wafford, K. A.; van Niel, M. B.; Ma, Q. P.; Horridge, E.; Herd, M. B.; Peden, D. R.; Belelli, D.; Lambert, J. J. Neuropharmacology 2009, 56, 182.
[8]
(g) Du, B.; Shan, A.; Zhang, Y.; Zhong, X.; Chen, D.; Cai, K. Am. J. Med. Sci. 2014, 347, 178.
[9]
For selected examples of C-C bond formation: (a) Toure, B. B.; Lane, B. S.; Sames, D. Org. Lett. 2006, 8, 1979.
[9]
(b) Fu, H. Y.; Chen, L.; Doucet, H. J. J. Org. Chem. 2012, 77, 4473.
[9]
(c) Choy, P. Y.; Luk, K. C.; Wu, Y. N.; So, C. M.; Wang, L. L.; Kwong, F. Y. J. Org. Chem. 2015, 80, 1457.
[9]
(d) Cao, H.; Lei, S.; Li, N. Y.; Chen, L. B.; Liu, J. Y.; Cai, H. Y.; Qiu, S. X.; Tan, J. W. Chem. Commun. 2015, 51, 1823.
[9]
(e) Monir, K.; Bagdi, A. K.; Ghosh, M.; Hajra, A. J. Org. Chem. 2015, 80, 1332.
[9]
(f) Liu, Q. X.; He, B. Y.; Qian, P. C.; Shao, L. X. Org. Biomol. Chem. 2017, 15, 1151.
[9]
(g) Xue, C.; Han, J.; Zhao, M.; Wang, L. Org. Lett. 2019, 21, 4402.
[9]
(h) Li, X.; Wang, S.; Zang, J.; Liu, M.; Jiang, G.; Ji, F. Org. Biomol. Chem. 2020, 18, 9100.
[9]
(i) Gernet, A.; Sevrain, N.; Volle, J.-N.; Ayad, T.; Pirat, J.-L.; Virieux, D. J. Org. Chem. 2020, 85, 14730.
[10]
For selected examples of C-N bond formation: (a) Mondal, S.; Samanta, S.; Jana, S.; Hajra, A. J. Org. Chem. 2017, 82, 4504.
[10]
(b) Samanta, S.; Ravi, C.; Rao, S. N.; Joshi, A.; Adimurthy, S. Org. Biomol. Chem. 2017, 15, 9590.
[10]
(c) Liu, K.; Wu, J.; Deng, Y.; Song, C.; Song, W.; Lei, A. ChemElectroChem 2019, 6, 4173.
[10]
(d) Saba, S.; Dos Santos, C. R.; Zavarise, B. R.; Naujorks, A. A. S.; Franco, M. S.; Schneider, A. R.; Scheide, M. R.; Affeldt, R. F.; Rafique, J.; Braga, A. L. Chem.-Eur. J. 2020, 26, 4461.
[11]
For selected examples of C-O bond formation: (a) Kibriya, G.; Samanta, S.; Jana, S.; Mondal, S.; Hajra, A. J. Org. Chem. 2017, 82, 13722.
[11]
(b) Yadav, R. K.; Kumar, Y.; Chaudhary, S. ChemistrySelect 2020, 5, 9235.
[11]
(c) Mo, Z.-Y.; Wang, X.-Y.; Zhang, Y.-Z.; Yang, L.; Tang, H.-T.; Pan, Y.-M. Org. Biomol. Chem. 2020, 18, 3832.
[11]
(d) Xu, X.; Chen, D.; Wang, Z. Chin. J. Org. Chem. 2019, 39, 3338. (in Chinese)
[11]
( 徐鑫明, 陈德茂, 王祖利, 有机化学, 2019, 39, 3338.)
[12]
For selected examples of C-S bond formation: (a) Matheis, C.; Wagner, V.; Goossen, L. J. Chem.-Eur. J. 2016, 22, 79.
[12]
(b) Siddaraju, Y.; Prabhu, K. R. J. Org. Chem. 2016, 81, 7838.
[12]
(c) Iida, H.; Demizu, R.; Ohkado, R. J. Org. Chem. 2018, 83, 12291.
[12]
(d) Rahaman, R.; Das, S.; Barman, P. Green Chem. 2018, 20, 141.
[12]
(e) Wen, J.; Niu, C.; Yan, K.; Cheng, X.; Gong, R.; Li, M.; Guo, Y.; Yang, J.; Wang, H. Green Chem. 2020, 22, 1129.
[12]
(f) Han, L.; Huang, M.; Li, Y.; Zhang, J.; Zhu, Y.; Kim, J. K.; Wu, Y. Org. Chem. Front. 2021, 8, 3110.
[12]
(g) Singh, D.; Chowdhury, S. R.; Pramanik, S.; Maity, S. Tetrahedron 2021, 88, 132125.
[12]
(h) Zeng, F.-L.; Zhu, H.-L.; Chen, X.-L.; Qu, L.-B.; Yu, B. Green Chem. 2021, 23, 3677.
[13]
For selected examples of C-P bond formation: (a) Yadav, M.; Dara, S.; Saikam, V.; Kumar, M.; Aithagani, S. K.; Paul, S.; Vishwakarma, R. A.; Singh, P. P. Eur. J. Org. Chem. 2015, 2015, 6526.
[13]
(b) Yuan, Y.; Qiao, J.; Cao, Y.; Tang, J.; Wang, M.; Ke, G.; Lu, Y.; Liu, X.; Lei, A. Chem. Commun. 2019, 55, 4230.
[13]
(c) Tashrifi, Z.; Mohammadi-Khanaposhtani, M.; Larijani, B.; Mahdavi, M. Eur. J. Org. Chem. 2020, 2020, 269.
[13]
(d) Bagdi, A. K.; Hajra, A. Org. Biomol. Chem. 2020, 18, 2611.
[13]
(e) Gao, F.; Sun, K.; Chen, X.-L.; Shi, T.; Li, X.-Y.; Qu, L.-B.; Zhao, Y.-F.; Yu, B. J. Org. Chem. 2020, 85, 14744.
[14]
For selected examples of C-X bond formation: (a) Liu, P.; Gao, Y.; Gu, W.; Shen, Z.; Sun, P. J. Org. Chem. 2015, 80, 11559.
[14]
(b) Semwal, R.; Ravi, C.; Kumar, R.; Meena, R.; Adimurthy, S. J. Org. Chem. 2019, 84, 792.
[14]
(c) Neto, J. S. S.; Balaguez, R. A.; Franco, M. S.; de SaMachado, V. C.; Saba, S.; Rafique, J.; Galetto, F. Z.; Braga, A. L. Green Chem. 2020, 22, 3410.
[14]
(d) Kalari, S.; Balasubramanian, S.; Rode, H. B. Tetrahedron Lett. 2021, 71, 153028.
[15]
For selected examples of C-Se bond formation: (a) Rafique, J.; Saba, S.; Franco, M. S.; Bettanin, L.; Schneider, A. R.; Silva, L. T.; Braga, A. L. Chem.-Eur. J. 2018, 24, 4173.
[15]
(b) Guo, T.; Wei, X.-N.; Liu, Y.; Zhang, P.-K.; Zhao, Y.-H. Org. Chem. Front. 2019, 6, 1414.
[15]
(c) Kim, Y. J.; Kim, D. Y. Tetrahedron Lett. 2019, 60, 739.
[15]
(d) Zhu, Y.-S.; Xue, Y.; Liu, W.; Zhu, X.; Hao, X.-Q.; Song, M.-P. J. Org. Chem. 2020, 85, 9106.
[16]
Wang, Y.; Frett, B.; McConnell, N.; Li, H.-Y. Org. Biomol. Chem. 2015, 13, 2958.
[17]
Jiao, J.; Xu, L.; Zheng, W.; Xiong, P.; Hu, M.-L.; Tang, R.-Y. Synthesis 2017, 49, 1839.
[18]
(a) Volla, C. M.; Atodiresei, I.; Rueping, M. Chem. Rev. 2014, 114, 2390.
[18]
(b) Chen, D.-F.; Han, Z.-Y.; Zhou, X.-L.; Gong, L.-Z. Acc. Chem. Res. 2014, 47, 2365.
[18]
(c) Zhu, S.; Zhao, X.; Li, H.; Chu, L. Chem. Soc. Rev. 2021, 50, 10836.
[18]
(d) Flores-Reyes, J. C.; Islas-Jácome, A.; González-Zamora, E. Org. Chem. Front. 2021, 8, 5460.
[18]
(e) Pan, J.; Wu, J.; Wu, F. Chin. J. Org. Chem. 2021, 41, 983. (in Chinese)
[18]
( 潘军, 吴晶晶, 吴范宏, 有机化学, 2021, 41, 983.)
[19]
(a) D’Souza, D. M.; Mueller, T. J. J. Chem. Soc. Rev. 2007, 36, 1095.
[19]
(b) Xiao, Y.; Lin, J.-B.; Zhao, Y.-N.; Liu, J.-Y.; Xu, P.-F. Org. Lett. 2016, 18, 6276.
[19]
(c) Fan, W.; Ma, S. Angew. Chem., Int. Ed. 2014, 53, 14542.
[19]
(d) Yang, Q.; Yan, X.-T.; Feng, C.-T.; Chen, D.-X.; Yan, Z.-Z.; Xu, K. Org. Chem. Front. 2021, 8, 6384.
[19]
(e) Wang, X.; Chen, P.; Zhi, S.; Hu, H.; Kan, Y.; Tang, G.; Zhang, Z. Chin. J. Org. Chem. 2021, 41, 1241. (in Chinese)
[19]
( 王翔, 陈平, 支三军, 胡华友, 阚玉和, 唐果东, 张载超, 有机化学, 2021, 41, 1241.)
[19]
(f) Ma, W.; Han, Y.; Sun, J.; Yan, C. Chin. J. Org. Chem. 2021, 41, 3180. (in Chinese)
[19]
( 马蔚青, 韩莹, 孙晶, 颜朝国, 有机化学, 2021, 41, 3180.)
[20]
(a) Ge, W.; Zhu, X.; Wei, Y. Eur. J. Org. Chem. 2013, 2013, 6015.
[20]
(b) Mohan, D. C.; Rao, S. N.; Ravi, C.; Adimurthy, S. Asian J. Org. Chem. 2014, 3, 609.
[20]
(c) Kundu, S.; Basu, B. RSC Adv. 2015, 5, 50178.
[20]
(d) Reddy, R. J.; Shankar, A.; Kumari, A. H. Asian J. Org. Chem. 2019, 8, 2269.
[21]
(a) Qiao, H.; Sun, S.; Yang, F.; Zhu, Y.; Zhu, W.; Dong, Y.; Wu, Y.; Kong, X.; Jiang, L.; Wu, Y. Org. Lett. 2015, 17, 6086.
[21]
(b) Qiao, H.; Sun, S.; Yang, F.; Zhu, Y.; Kang, J.; Wu, Y.; Wu, Y. Adv. Synth. Catal. 2017, 359, 1976.
[21]
(c) Qiao, H.; Sun, S.; Zhang, Y.; Zhu, H.; Yu, X.; Yang, F.; Wu, Y.; Li, Z.; Wu, Y. Org. Chem. Front. 2017, 4, 1981.
[21]
(d) Qiao, H.; Sun, S.; Kang, J.; Yang, F.; Wu, Y.; Wu, Y. Chin. J. Org. Chem. 2018, 38, 86. (in Chinese)
[21]
( 乔辉杰, 孙素颜, 康建勋, 杨帆, 吴豫生, 吴养洁, 有机化学, 2018, 38, 86.)
[22]
Jian, W.-Q.; Wang, H.-B.; Du, K.-S.; Zhong, W.-Q.; Huang, J.-M. ChemElectroChem 2019, 6, 2733.
[23]
Vieira, B. M.; Padilha, N.; Nascimento, N. M.; Perin, G.; Alves, D.; Schumacher, R. F.; Lenardão, E. J. ARKIVOC 2019, ii, 6.
[24]
Kandimalla, S. R.; Sabitha, G. RSC Adv. 2016, 6, 67086.
Outlines

/