ARTICLES

Hydrosilanes as Hydrogen Source: Iridium-Catalyzed Hydrogenation of N-Heteroarenes

  • Miaomiao Zhang ,
  • Bo Han ,
  • Haojie Ma ,
  • Liang Zhao ,
  • Jijiang Wang ,
  • Yuqi Zhang
Expand
  • Laboratory of New Energy & New Function Materials, Shaanxi Key Laboratory of Chemical and Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000

Received date: 2021-10-29

  Revised date: 2021-11-26

  Online published: 2021-12-15

Supported by

National Natural Science Foundation of China(22061041); Natural Science Foundation of Shaanxi Province(2020JQ-789); Open Sharing Platform for Scientific and Technological Resources of Shaanxi Province(2021PT-004); Doctoral Research Foundation of Yan'an University(YDBK2019-60); Training Program of Innovation and Entrepreneurship for Undergraduates of Shaanxi Province(S202010719114)

Abstract

A ligand- and base-free method for the catalytic synthesis of bioactive 1,2,3,4-tetrahydroquinolines via the homogeneous iridium-catalyzed hydrogenation of quinolines and related N-heteroarenes is reported. A catalytic reduction of N-heteroarenes employing low-cost and air-stable hydrosilane was demonstrated under mild conditions. This reaction is scalable and tolerable for sensitive functional groups, such as bromide, chloride, fluoride, ester, carboxylic acid, cyanogroup and nitro groups. This catalytic system provides a convenient, environmentally friendly and practical method to obtain a variety of 1,2,3,4-tetrahydroquinoline derivatives under mild reaction conditions.

Cite this article

Miaomiao Zhang , Bo Han , Haojie Ma , Liang Zhao , Jijiang Wang , Yuqi Zhang . Hydrosilanes as Hydrogen Source: Iridium-Catalyzed Hydrogenation of N-Heteroarenes[J]. Chinese Journal of Organic Chemistry, 2022 , 42(4) : 1170 -1178 . DOI: 10.6023/cjoc202110041

References

[1]
Eds.: de Vries, J. G., Elsevier, C. J. The Handbook of Homogeneous Hydrogenation, Wiley-VCH, Weinheim, Germany, 2008.
[2]
(a) He, Y.; Fan, Q. Chin. J. Org. Chem. 2019, 39, 3310. (in Chinese)
[2]
( 何艳梅, 范青华, 有机化学, 2019, 39, 3310.)
[2]
(b) Han, B.; Ma, P.; Cong, X.; Chen, H.; Zeng, X. J. Am. Chem. Soc. 2019, 141, 9018.
[2]
(c) Gu, X.; Li, X.; Xie, J.; Zhou, Q. Acta Chim. Sinica 2019, 77, 598. (in Chinese)
[2]
( 顾雪松, 李校根, 谢建华, 周其林, 化学学报, 2019, 77, 598.)
[2]
(d) Liu, Y.; Dong, X.-Q.; Zhang, X. Chin. J. Org. Chem. 2020, 40, 1096. (in Chinese)
[2]
( 刘元华, 董秀琴, 张绪穆, 有机化学, 2020, 40, 1096.)
[2]
(e) Liu, T.; Wang, C. Chin. J. Org. Chem. 2020, 8, 2585. (in Chinese)
[2]
( 刘婷, 王从洋, 有机化学, 2020, 8, 2585.)
[2]
(f) Zhao, L.; Hu, C.; Cong, X.; Deng, G.; Liu, L. L.; Luo, M.; Zeng, X. J. Am. Chem. Soc. 2021, 143, 1618.
[3]
(a) Ding, C. Z.; Hunt, J. T.; Ricca, C.; Manne, V. Bioorg. Med. Chem. Lett. 2000, 10, 273.
[3]
(b) Sridharan, V.; Suryavanshi, P. A.; Menéndez, J. C. Chem. Rev. 2011, 111, 7157.
[3]
(c) Xu, Z.; Ye, H.; Zhang, W.; Xiao, Q. Chin. J. Org. Chem. 2021, 47, 2127. (in Chinese)
[3]
( 许招会, 叶华涛, 张文峰, 肖强, 有机化学, 2021, 47, 2127.)
[4]
(a) Sridharan, V.; Suryavanshi, P. A.; Menéndez, J. C. Chem. Rev. 2011, 111, 7157.
[4]
(b) Yang, Z.; Chan, F.; He, Y.-M.; Yang, N.; Fan, Q.-H. Catal. Sci. Technol. 2014, 4, 2887.
[4]
(c) Yang, C.-H.; Chen, X.; Li, H.; Wei, W.; Yang, Z.; Chang, J. Chem. Commun. 2018, 54, 8622.
[4]
(d) Han, Z.; Liu, G.; Yang, X.; Dong, X.-Q.; Zhang, X. ACS Catal. 2021, 11, 7281.
[5]
Farndon, J. J.; Ma, X.; Bower, J. F. J. Am. Chem. Soc. 2017, 139, 14005.
[6]
(a) Compain, G.; Martin-Mingot, A.; Frapper, G.; Bachmann, C.; Jouannetaud, M. P.; Thibaudeau, S. Chem. Commun. 2012, 48, 5877.
[6]
(b) Cai, X.-F.; Huang, W.-X.; Chen, Z.-P.; Zhou, Y.-G. Chem. Commun. 2014, 50, 9588.
[6]
(c) Chen, F.; Surkus, A. E.; He, L.; Pohl, M. M.; Radnik, J.; Topf, C.; Junge, K.; Beller, M. J. Am. Chem. Soc. 2015, 137, 11718.
[6]
(d) Kubota, K.; Watanabe, Y.; Ito, H. Adv. Synth. Catal. 2016, 358, 2379.
[6]
(e) Li, W.; Cui, X.; Junge, K.; Surkus, A. E.; Kreyenschulte, C. R.; Bartling, S.; Beller, M. ACS Catal. 2019, 9, 4302.
[7]
(a) Ren, D.; He, L.; Yu, L.; Ding, R. S.; Liu, Y. M.; Cao, Y.; He, H. Y.; Fan, K.-N. J. Am. Chem. Soc. 2012, 134, 17592.
[7]
(b) Vilhanová, B.; Bokhoven, J. A.; Ranocchiaric, M. Adv. Synth. Catal. 2017, 359, 677.
[8]
(a) Heitbaum, M.; Fröhlich, R.; Glorius, F. Adv. Synth. Catal. 2010, 352, 357.
[8]
(b) Ge, D.; Hu, L.; Wang, J.; Li, X.; Qi, F.; Lu, J.; Cao, X.; Gu, H. ChemCatChem 2013, 5, 2183.
[9]
Wang, C.; Li, C.; Wu, X.; Pettman, A.; Xiao, J. Angew. Chem., Int. Ed. 2009, 48, 6524.
[10]
(a) Wang, W.-B.; Lu, S.-M.; Yang, P.-Y.; Han, X.-W.; Zhou, Y.-G. J. Am. Chem. Soc. 2003, 125, 10536.
[10]
(b) Yamaguchi, R.; Ikeda, C.; Takahashi, Y.; Fujita, K. J. Am. Chem. Soc. 2009, 131, 8410.
[10]
(c) John, J.; Wilson-Konderka, C.; Metallinos, C. Adv. Synth. Catal. 2015, 357, 2071.
[10]
(d) Wang, S.; Huang, H.; Bruneau, C.; Fischmeister, C. ChemSusChem 2019, 12, 2350.
[11]
(a) Gong, Y.; Zhang, P.; Xu, X.; Li, Y.; Li, H.; Wang, Y. J. Catal. 2013, 297, 272.
[11]
(b) Zhang, Y.; Zhu, J.; Xia, Y.-T.; Sun, X.-T.; Wu, L. Adv. Synth. Catal. 2016, 358, 3039.
[12]
(a) Borowski, A. F.; Vendier, L.; Sabo-Etienne, S.; Rozycka- Sokolowska, E.; Gaudyn, A. V. Dalton Trans. 2012, 41, 14117.
[12]
(b) Ding, Z. Y.; Wang, T.; He, Y. M.; Chen, F.; Zhou, H. F.; Fan, Q. H.; Guo, Q.; Chan, A. S. C. Adv. Synth. Catal. 2013, 355, 3727.
[12]
(c) Kuwano, R.; Ikeda, R.; Hirasada, K. Chem. Commun. 2015, 51, 1.
[12]
(d) Ma, W.; Zhang, J.; Xu, C.; Chen, F.; He, Y. M.; Fan, Q.-H. Angew. Chem., Int. Ed. 2016, 55, 12891.
[12]
(e) Yang, Z.; Chen, F.; Zhang, S.; He, Y.; Yang, N.; Fan, Q.-H. Org. Lett. 2017, 19, 1458.
[13]
(a) Chakraborty, S.; Brennessel, W. W.; Jones, W. D. J. Am Chem. Soc. 2014, 136, 8564.
[13]
(b) Long, X.; Li, Z.; Gao, G.; Sun, P.; Wang, J.; Zhang, B.; Zhong, J.; Jiang, Z.; Li, F. Nat. Commun. 2020, 11, 4074.
[14]
(a) Xu, R.; Chakraborty, S.; Yuan, H.; Jones, W. D. ACS Catal. 2015, 5, 6350.
[14]
(b) Wei, Z., Chen, Y.; Wang, J. Su, D.; Tang, M.; Miao, S.; Wang, Y. ACS Catal. 2016, 6, 5816.
[14]
(c) Adam, R.; Cabrero-Antonino, J. R.; Spannenberg, A.; Junge, A.; Jackstell, R.; Beller, M. Angew. Chem., Int. Ed. 2017, 56, 3216.
[14]
(d) Hervochon, J.; Dorcet, V.; Junge, k.; Beller, M.; Fischmeister, C. Catal. Sci. Technol. 2020, 10, 4820.
[14]
(e) Duan, Y.-N.; Du, X.; Cui, Z.; Zeng, Y.; Liu, Y.; Yang, T.; Wen, J.; Zhang, X. J. Am Chem. Soc. 2019, 141, 20424.
[15]
(a) Wang, Y.; Zhu, L.; Shao, Z.; Li, G.; Lan, Y.; Liu, Q. J. Am. Chem. Soc. 2019, 141, 17337.
[15]
(b) Papa, V.; Cao, Y.; Spannenberg, A.; Junge, K.; Beller, M. Nat. Catal. 2020, 3, 135.
[15]
(c) Wang, Z.; Chen, L.; Mao, G.; Wang, C. Chin. Chem. Lett. 2020, 31, 1890.
[16]
(a) Alberico, E.; Nielsen, M. Chem. Commun. 2015, 51, 6714.
[16]
(b) Hu, X.; Wang, G.; Qin, C.; Xie, X.; Zhang, C.; Xu, W.; Liu, Y. Org. Chem. Front. 2019, 6, 2619.
[16]
(c) Vermaak, V.; Vosloo, H. C. M.; Swarts, A. J. Adv. Synth. Catal. 2020, 362, 5788.
[17]
(a) Wang, C.; Wu, X.; Xiao, J. Chem. Asian J. 2008, 3, 1750.
[17]
(b) Guo, Q.-S.; Du, D.-M.; Xu, J. Angew. Chem., Int. Ed. 2008, 47, 759.
[17]
(c) Werkmeister, S.; Neumann, J.; Junge, K.; Beller, M. Chem.-Eur. J. 2015, 21, 12226.
[17]
(d) Zhou, J.; Zhang, Q.-F.; Zhao, W.-H.; Jiang, G.-F. Org. Biomol. Chem. 2016, 14, 6937.
[18]
(a) Wang, D.; Astruc, D. Chem. Rev. 2015, 115, 6621.
[18]
(b) Gilkey, M. J.; Xu, B. ACS Catal. 2016, 6, 1420.
[18]
(c) Yamada, I.; Noyori, R. Org. Lett. 2000, 2, 3425.
[18]
(d) Martin, N. J. A.; Ozores, L.; List, B. J. Am. Chem. Soc. 2007, 129, 8976.
[18]
(e) Sonnenberg, J. F.; Coombs, N.; Dube, P. A.; Morris, R. H. J. Am. Chem. Soc. 2012, 134, 5893.
[18]
(f) Jagadeesh, R. V.; Natte, K.; Junge, H.; Beller, M. ACS Catal. 2015, 5, 1526.
[18]
(g) Wang, J.; Chen, M.-W.; Ji, Y.; Hu, S.-B.; Zhou, Y.-G. J. Am. Chem. Soc. 2016, 138, 10413.
[18]
(h) Bigler, R.; Huber, R.; Stockli, M.; Mezzetti, A. ACS Catal. 2016, 6, 6455.
[18]
(i) Li, S.; Li, G.; Meng, W.; Du, H. J. Am. Chem. Soc. 2016, 138, 12956.
[18]
(j) BruneauVoisine, A.; Wang, D.; Dorcet, V.; Roisnel, T.; Darcel, C.; Sortais, J.-B. Org. Lett. 2017, 19, 3656.
[18]
(k) He, Y.; Tang, J.; Luo, M.; Zeng, X. Org. Lett. 2018, 20, 4159.
[18]
(l) Wang, X.; Zhang, Y.; Yuan, D.; Yao, Y. Org. Lett. 2020, 22, 5695.
[18]
(m) Kattamuri, P. V.; West, J. R. J. Am. Chem. Soc. 2020, 142, 19316.
[18]
(n) Slone, S. E.; Reyes, A.; Vang, Z. P.; Li, L.; Behlow, K. T.; Clark, J. P. Org. Lett. 2020, 22, 9139.
[18]
(o) Wu, X.; Ding, G.; Lu, W.; Yang, L.; Wang, J.; Zhang, Y.; Xie, X.; Zhang, Z. Org. Lett. 2021, 23, 1434.
[19]
(a) Rueping, M.; Antonchick, A. P.; Theissmann, T. Angew. Chem., Int. Ed. 2006, 45, 3683.
[19]
(b) Guo, Q. -S.; Du, D.-M.; Xu, J. Angew. Chem., Int. Ed. 2008, 47, 759.
[19]
(c) Fujita, K.; Kitatsuji, C.; Furukawa, S.; Yamaguchi, R. Tetrahedron Lett. 2004, 45, 3215.
[19]
(d) Wang, C.; Li, C.; Wu, X.; Pettman, A.; Xiao, J. Angew. Chem., Int. Ed. 2009, 48, 6524.
[20]
Jia, W.-G.; Gao, L.-L.; Wang, Z.-B.; Wang, J.-J.; Sheng, E.-H.; Han, Y.-F. Organometallics 2020, 39, 1790.
[21]
Wang, Y.; Dong, B.; Wang, Z.; Cong, X.; Bi, X. Org. Lett. 2019, 21, 3631.
[22]
(a) Manas, M. G.; Sharninghausen, L. S.; Balcells, D.; Crabtree, R. H. New J. Chem. 2014, 38, 1694.
[22]
(b) Voutchkova, A. M.; Gnanamgari, D.; Jakobsche, C. E.; Butler, C.; Miller, S. J.; Parr, J.; Crabtree, R. H. J. Organomet. Chem. 2008, 693, 1815.
[23]
Widegren, J. A.; Bennett, M. A.; Finke, R. G. J. Am. Chem. Soc. 2003, 125, 10301.
[24]
Kim, E.; Jeon, H. J.; Park, S.; Chang, S. Adv. Synth. Catal. 2019, 361, 1.
[25]
Bhattacharyya, D.; Nandi, S.; Adhikari, P.; Sarmah, B. K.; Konwar, M.; Das, A. Org. Biomol. Chem. 2020, 18, 1214.
[26]
Okten, S. J. Chem. Res. 2019, 43, 274.
[27]
Duan, Y. N.; Du, X. M.; Cui, Z.; Zeng, Y.; Liu, Y.; Yang, T.; Wen, J.; Zhang, X. J. Am. Chem. Soc. 2019, 141, 20424.
[28]
Wang, Z.-C.; Xie, P.-P.; Xu, Y.; Hong, X.; Shi, S.-L. Angew. Chem., Int. Ed. 2021, 60, 16077.
Outlines

/