Chinese Journal of Organic Chemistry >
Advances in the Production of Acrylic Acid and Its Derivatives by CO2/C2H4 Coupling
Received date: 2021-10-28
Revised date: 2021-11-29
Online published: 2021-12-22
Supported by
Pujiang Talent Program(18PJ1402500); National Natural Science Foundation of China(22171084)
Carbon dioxide (CO2) is not just a greenhouse gas, but also an important and effective one-carbon resource, which is abundant in nature and can be used to produce organic chemicals, materials, and sugars etc. CO2 is thermodynamically and kinetically inert because the carbon atom in CO2 molecule is in its highest oxidation state. In the past decades, several catalytic systems have been developed for the utilization of CO2. The catalytic conversion of CO2 to unsaturated carboxylic acids and their derivatives has attracted great attention. Among them, the so-called “dream reaction” of coupling CO2/C2H4 is 100% atom efficient. Transition metal-based catalysts are developed for catalytic transformation of CO2/C2H4 into acrylic acid and its derivatives, including Ni, Pd, Fe, and Ru etc. In addition, the additives play an important role in improving the catalyst performance. In this review, the recent advances on transition metal complex catalyzed CO2/C2H4 coupling reaction are summarized on the basis of catalyst activity and reaction mechanisms, including both the experiment and theoretical calculation. Furthermore, the challenges and perspectives in the catalytic transformation of CO2/C2H4 are also discussed.
Key words: carbon dioxide; acrylic acid; coupling reaction; reaction mechanism
Youcai Zhu , Xinxin Ding , Li Sun , Zhen Liu . Advances in the Production of Acrylic Acid and Its Derivatives by CO2/C2H4 Coupling[J]. Chinese Journal of Organic Chemistry, 2022 , 42(4) : 965 -977 . DOI: 10.6023/cjoc202110040
[1] | Park, C.; Lee, Y. T.; Lee, S. H. Atmos. Environ. 2021, 252, 118340. |
[2] | Cokoja, M.; Bruckmeier, C.; Rieger, B.; Herrmann, W. A.; Kühn, F. E. Angew. Chem., nt. Ed. 2011, 50, 8510. |
[3] | Mikkelsen, M.; Jorgensen, M.; Krebs, F. C. Energy Environ. Sci. 2010, 3, 43. |
[4] | Aresta, M.; Dibenedetto, A.; Angelini, A. Chem. Rev. (Washington, DC, U. S.) 2014, 114, 1709. |
[5] | Yi, Y. P.; Hang, W.; Xi, C. J. Chin. J. Org. Chem. 2021, 41, 80. (in Chinese) |
[5] | ( 易雅平, 杭炜, 席婵娟, 有机化学, 2021, 41, 80.) |
[6] | Liang, B, L.; Duan, H, M.; Hou, B, L.; Su, X.; Huang, Y, Q.; Wang, A, Q.; Wang, X, D.; Zhang, T. Chem. Ind. Eng. Prog. 2015, 34, 3746. (in Chinese) |
[6] | ( 梁兵连, 段洪敏, 侯宝林, 苏雄, 黄延强, 王爱琴, 王晓东, 张涛, 化工进展, 2015, 34, 3746.) |
[7] | Zhang, W. Z.; Zhang, N.; Guo, X. C.; Lu, X. B. Chin. J. Org. Chem. 2017, 37, 1309. (in Chinese) |
[7] | ( 张文珍; 张宁; 郭春晓; 吕小兵, 有机化学, 2017, 37, 1309.) |
[8] | Chen, K. H.; Li, H. R.; He, L. N. Chin. J. Org. Chem. 2020, 40, 2195. (in Chinese) |
[8] | ( 陈凯宏, 李红茹, 何良年, 有机化学, 2020, 40, 2195.) |
[9] | Zhang, Y.-G.; Riduan, S. N. Angew. Chem., Int. Ed. 2011, 50, 6210. |
[10] | Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. (Washington, DC, U. S.) 2007, 107, 2365. |
[11] | Tortajada, A.; Julia-Hernandez, F.; Boerjesson, M.; Moragas, T.; Martin, R. Angew. Chem., Int. Ed. 2018, 57, 15948. |
[12] | Xu, P.; Wang, S. Y.; Fang, Y.; Ji, S. J. Chin. J. Org. Chem. 2018, 38, 1626. (in Chinese) |
[12] | ( 徐佩, 汪顺义, 方毅, 纪顺俊, 有机化学, 2018, 38, 1626.) |
[13] | Tappe, N. A.; Reich, R. M.; D'Elia, V.; Kühn, F. E. Dalton Trans. 2018, 47, 13281. |
[14] | Anthofer, M. H.; Wilhelm, M. E.; Cokoja, M.; Markovits, I. I. E.; Poethig, A.; Mink, J.; Herrmann, W. A.; Kühn, F. E. Catal. Sci. Technol. 2014, 4, 1749. |
[15] | Dutta, B.; Sofack-Kreutzer, J.; Ghani, A. A.; D'Elia, V.; Pelletier, J. D. A.; Cokoja, M.; Kühn, F. E.; Basset, J.-M. Catal. Sci. Technol. 2014, 4, 1534. |
[16] | Kissling, S.; Altenbuchner, P. T.; Lehenmeier, M. W.; Herdtweck, E.; Deglmann, P.; Seemann, U. B.; Rieger, B. Chem.-Eur. J. 2015, 21, 8148. |
[17] | Gao, P.; Cui, X.; Zhong, L, S.; Sun, Y, H.. Chem. Ind. Eng. Prog. 2019, 38, 183. (in Chinese) |
[17] | ( 高鹏, 崔勖, 钟良枢, 孙予罕, 化工进展, 2019, 38, 183.) |
[18] | Li, J.; Deng, Y, Y.; Yang, L.; Cao, X. J. Chem. Ind. Eng. Prog. 2013, 32, 340. (in Chinese) |
[18] | ( 李静, 邓廷云, 杨林, 曹建新, 化工进展, 2013, 32, 340.) |
[19] | Sasaki, Y.; Inoue, Y.; Hashimoto, H. J. Chem. Soc., Chem. Commun. 1976, 605. |
[20] | Inoue, Y.; Sasaki, Y.; Hashimoto, H. Bull. Chem. Soc. Jpn. 1978, 51, 2375. |
[21] | Lejkowski, M. L.; Lindner, R.; Kageyama, T.; Bodizs, G. E.; Plessow, P. N.; Mueller, I. B.; Schaefer, A.; Rominger, F.; Hofmann, P.; Futter, C.; Schunk, S. A.; Limbach, M. Chem.-Eur. J. 2012, 18, 14017. |
[22] | Brill, M.; Lazreg, F.; Cazin, C. S. J.; Nolan, S. P. Top. Organomet. Chem. 2016, 53, 225. |
[23] | Hendriksen, C.; Pidko, E. A.; Yang, G.; Schaeffner, B.; Vogt, D. Chem.-Eur. J. 2014, 20, 12037. |
[24] | Zhang, Z.; Guo, F.; Kühn, F. E.; Sun, J.; Zhou, M.; Fang, X. Appl. Organomet. Chem. 2017, 31, e3567. |
[25] | Hollering, M.; Dutta, B.; Kühn, F. E. Coord. Chem. Rev. 2016, 309, 51. |
[26] | Wang, X.; Wang, H.; Sun, Y. Chem 2017, 3, 211. |
[27] | Schaub, T. Top. Organomet. Chem. 2019, 65, 253. |
[28] | Lee, S. Y. T.; Ghani, A. A.; D'Elia, V.; Cokoja, M.; Herrmann, W. A.; Basset, J.-M.; Kühn, F. E. New J. Chem. 2013, 37, 3512. |
[29] | Kunihiro, K.; Heyte, S.; Paul, S.; Roisnel, T.; Carpentier, J.-F.; Kirillov, E. Chem.-Eur. J. 2021, 27, 3997. |
[30] | Kraus, S.; Rieger, B. Top. Organomet. Chem. 2016, 53, 199. |
[31] | Tsuji, Y.; Fujihara, T. Chem. Commun. (Cambridge, U. K.) 2012, 48, 9956. |
[32] | Hoberg, H.; Schaefer, D. J. Organomet. Chem. 1983, 251, C51. |
[33] | Papai, I.; Schubert, G.; Mayer, I.; Besenyei, G.; Aresta, M. Organometallics 2004, 23, 5252. |
[34] | Dreissig, W.; Dietrich, H. Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 1981, B37, 931. |
[35] | Fischer, R.; Langer, J.; Malassa, A.; Walther, D.; Goerls, H.; Vaughan, G. Chem. Commun. (Cambridge, U. K.) 2006, 2510. |
[36] | Graham, D. C.; Mitchell, C.; Bruce, M. I.; Metha, G. F.; Bowie, J. H.; Buntine, M. A. Organometallics 2007, 26, 6784. |
[37] | Li, Y.; Liu, Z.; Cheng, R.; Liu, B. ChemCatChem 2018, 10, 1420. |
[38] | Al-Ghamdi, M.; Vummaleti, S. V. C.; Falivene, L.; Pasha, F. A.; Beetstra, D. J.; Cavallo, L. Organometallics 2017, 36, 1107. |
[39] | Aresta, M.; Pastore, C.; Giannoccaro, P.; Kovacs, G.; Dibenedetto, A.; Papai, I. Chem.-Eur. J. 2007, 13, 9028. |
[40] | Bruckmeier, C.; Lehenmeier, M. W.; Reichardt, R.; Vagin, S.; Rieger, B. Organometallics 2010, 29, 2199. |
[41] | Lee, S. Y. T.; Cokoja, M.; Drees, M.; Li, Y.; Mink, J.; Herrmann, W. A.; Kühn, F. E. ChemSusChem 2011, 4, 1275. |
[42] | Liang, L.-C.; Chien, P.-S.; Lee, P.-Y. Organometallics 2008, 27, 3082. |
[43] | Guo, W.; Michel, C.; Schwiedernoch, R.; Wischert, R.; Xu, X.; Sautet, P. Organometallics 2014, 33, 6369. |
[44] | Plessow, P. N.; Weigel, L.; Lindner, R.; Schaefer, A.; Rominger, F.; Limbach, M.; Hofmann, P. Organometallics 2013, 32, 3327. |
[45] | Jin, D.; Williard, P. G.; Hazari, N.; Bernskoetter, W. H. Chem.-Eur. J. 2014, 20, 3205. |
[46] | Huguet, N.; Jevtovikj, I.; Gordillo, A.; Lejkowski, M. L.; Lindner, R.; Bru, M.; Khalimon, A. Y.; Rominger, F.; Schunk, S. A.; Hofmann, P.; Limbach, M. Chem.-Eur. J. 2014, 20, 16858. |
[47] | Knopf, I.; Tofan, D.; Beetstra, D.; Al-Nezari, A.; Al-Bahily, K.; Cummins, C. C. Chem. Sci. 2017, 8, 1463. |
[48] | Li, Y.; Liu, Z.; Zhang, J.; Cheng, R.; Liu, B. ChemCatChem 2018, 10, 5669. |
[49] | Hopkins, M. N.; Shimmei, K.; Uttley, K. B.; Bernskoetter, W. H. Organometallics 2018, 37, 3573. |
[50] | Uttley, K. B.; Shimmei, K.; Bernskoetter, W. H. Organometallics 2020, 39, 1573. |
[51] | Musco, A.; Perego, C.; Tartiari, V. Inorg. Chim. Acta 1978, 28, L147. |
[52] | Langer, J.; Fischer, R.; Goerls, H.; Walther, D. Eur. J. Inorg. Chem. 2007, 2257. |
[53] | Stieber, S. C. E.; Huguet, N.; Kageyama, T.; Jevtovikj, I.; Ariyananda, P.; Gordillo, A.; Schunk, S. A.; Rominger, F.; Hofmann, P.; Limbach, M. Chem. Commun. (Cambridge, U. K.) 2015, 51, 10907. |
[54] | Manzini, S.; Huguet, N.; Trapp, O.; Schaub, T. Eur. J. Org. Chem. 2015, 2015, 7122. |
[55] | Manzini, S.; Cadu, A.; Schmidt, A.-C.; Huguet, N.; Trapp, O.; Paciello, R.; Schaub, T. ChemCatChem 2017, 9, 2269. |
[56] | Li, B.; Kyran, S. J.; Yeung, A. D.; Bengali, A. A.; Darensbourg, D. J. Inorg. Chem. 2013, 52, 5438. |
[57] | Ito, T.; Takahashi, K.; Iwasawa, N. Organometallics 2019, 38, 205. |
[58] | Takahashi, K.; Hirataka, Y.; Ito, T.; Iwasawa, N. Organometallics 2020, 39, 1561. |
[59] | Hoberg, H.; Jenni, K.; Angermund, K.; Krüger, C. Angew. Chem., Int. Ed. 1987, 26, 153. |
[60] | Hanna, B. S.; MacIntosh, A. D.; Ahn, S.; Tyler, B. T.; Palmore, G. T. R.; Williard, P. G.; Bernskoetter, W. H. Organometallics 2014, 33, 3425. |
[61] | Alvarez, R.; Carmona, E.; Galindo, A.; Gutierrez, E.; Marin, J. M.; Monge, A.; Poveda, M. L.; Ruiz, C.; Savariault, J. M. Organometallics 1989, 8, 2430. |
[62] | Alvarez, R.; Carmona, E.; Cole-Hamilton, D. J.; Galindo, A.; Gutierrez-Puebla, E.; Monge, A.; Poveda, M. L.; Ruiz, C. J. Am. Chem. Soc. 1985, 107, 5529. |
[63] | Bernskoetter, W. H.; Tyler, B. T. Organometallics 2011, 30, 520. |
[64] | Knopf, I.; Courtemanche, M.-A.; Cummins, C. C. Organometallics 2017, 36, 4834. |
[65] | Yamashita, K.; Chatani, N. Synlett 2005, 919. |
[66] | Aresta, M.; Quaranta, E. J. Organomet. Chem. 1993, 463, 215. |
/
〈 |
|
〉 |