Chinese Journal of Organic Chemistry >
Organoselenium-Catalyzed Conversion of Oximes to Nitriles or Ketones
Received date: 2021-09-22
Revised date: 2021-12-06
Online published: 2021-12-31
Supported by
Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education(KLSAOFM1912)
Phenylselenenic acid and phenylseleninic acid were formed in situ in the reaction of diphenyl diselenide with 1-fluoropyridine trifluoromethane sulfonate (FP-OTf) in air. This mixture can catalyze the conversion of aldoxime to nitrile or ketoxime to ketone, respectively. The catalytic effect on those two kinds of reactions can be improved by changing the amount of diphenyl diselenide and the ratio of diphenyl diselenide to FP-OTf. Nitriles were obtained from the open-air reaction of aldoxime catalyzed by the mixture of diphenyl diselenide (5 mol%) and FP-OTf (4 mol%) with the yields of 57%~94%. In the conversion of ketoximes to ketones, higher yields of ketones (74%~91%) were obtaied when the ratio of diphenyl diselenide to FP-OTf was 1∶1.2 and the dosage of diphenyl diselenide was 2.5 mol%.
Liming Wang , Ke Li , Wanxuan Zhang . Organoselenium-Catalyzed Conversion of Oximes to Nitriles or Ketones[J]. Chinese Journal of Organic Chemistry, 2022 , 42(4) : 1235 -1240 . DOI: 10.6023/cjoc202109036
[1] | (a) Guo, R.; Liao, L.; Zhao, X. Molecules 2017, 22, 835. |
[1] | (b) Ortgies, S.; Breder, A. ACS Catal. 2017, 7, 5828. |
[1] | (c) Freudendahl, D. M.; Santoro, S.; Shahzad, S. A.; Santi, C.; Wirth, T. Angew. Chem., Int. Ed. 2009, 48, 8409. |
[1] | (d) Santi, C.; Santoro, S.; Battistelli, B. Curr. Org. Chem. 2010, 14, 2442. |
[1] | (e) Santoro, S.; Azeredo, J. B.; Nascimento, V.; Sancineto, L.; Braga, A. L.; Santi, C. RSC Adv. 2014, 4, 31521. |
[1] | (f) Xiao, X.; Guan, C.; Xu, J.; Fu, W.; Yu, L. Green Chem. 2021, 23, 4647. |
[2] | (a) Brink, G.-J.; Fernandes, B. C. M.; van Vliet, M. C. A.; Arends, I. W. C. E.; Sheldon, R. A. J. Chem. Soc., Perkin Trans. 1 2001, 224. |
[2] | (b) Choi, J. K.; Chang, Y. K.; Hong, S. Y. Tetrahedron Lett. 1988, 29, 1967. |
[2] | (c) Roh, K. R.; Kim, K. S.; Kim, Y. H. Tetrahedron Lett. 1991, 32, 793. |
[2] | (d) Ichikawa, H.; Usami, Y.; Arimoto, M. Tetrahedron Lett. 2005, 46, 8665. |
[2] | (e) Zhang, X.; Sun, J.; Ding, Y.; Yu, L. Org. Lett. 2015, 17, 5840. |
[2] | (f) Wang, F.; Yang, C.; Shi, Y.; Lei, Y. Mol. Catal. 2021, 514, 111849. |
[3] | (a) Jin, W.; Zheng, P.; Wong, W.-T.; Law, G.-L. Adv. Synth. Catal. 2017, 359, 1588. |
[3] | (b) Chuang, H.-Y.; Schupp, M.; Meyrelles, R.; Maryasin, B.; Maulide, N. Angew. Chem., Int. Ed. 2021, 60, 13778. |
[4] | Wu, J.-J.; Xu, J.; Zhao, X. Chem.-Eur. J. 2016, 22, 15265. |
[5] | (a) Kawamata, Y.; Hashimoto, T.; Maruoka, K. J. Am. Chem. Soc. 2016, 138, 5206. |
[5] | (b) Luo, J.; Cao, Q.; Cao, X.; Zhao, X. Nat. Commun. 2018, 9, 527. |
[6] | (a) Tiecco, M.; Testaferr, L.; Santi, C. Eur. J. Org. Chem. 1999, 797. |
[6] | (b) Guo, R.; Huang, J.; Huang, H.; Zhao, X. Org. Lett. 2016, 18, 504. |
[7] | (a) Fragale, G.; Neuburger, M.; Wirth, T. Chem. Commun. 1998, 1867. |
[7] | (b) Fujita, K.; Iwaoka, M.; Tomoda, S. Chem. Lett. 1994, 23, 923. |
[7] | (c) Wirth, T.; Häuptli, S.; Leuenberger, M. Tetrahedron: Asymmetry 1998, 9, 547. |
[7] | (d) Tiecco, M.; Testaferri, L.; Santi, C.; Tomassini, C.; Marini, F.; Bagnoli, L.; Temperini, A. Chem.-Eur. J. 2002, 8, 1118. |
[7] | (e) Browne, D. M.; Niyomura, O.; Wirth, T. Org. Lett. 2007, 9, 3169. |
[7] | (f) Alberto, E. E.; Braga, A. L.; Detty, M. R. Tetrahedron 2012, 68, 10476. |
[7] | (g) Ortgies, S.; Rode, K.; Koszinowski, K.; Kind, J.; Thiele, C. M.; Rehbein, J.; Breder, A. ACS Catal. 2017, 7, 7578. |
[8] | (a) Ortgies, S.; Breder, A. Org. Lett. 2015, 17, 2748. |
[8] | (b) Zhang, X.; Guo, R.; Zhao, X. Org. Chem. Front. 2015, 2, 1334. |
[9] | (a) Hori, T.; Sharpless, K. B. J. Org. Chem. 1979, 44, 4204. |
[9] | (b) Hori, T.; Sharpless, K. B. J. Org. Chem. 1979, 44, 4208. |
[9] | (c) Mellegaard, S. R.; Tunge, J. A. J. Org. Chem. 2004, 69, 8979. |
[9] | (d) Carrera, I.; Brovetto, M. C.; Seoane, G. A. Tetrahedron Lett. 2006, 47, 7849. |
[9] | (e) Guo, R.; Huang, J.; Zhao, X. ACS Catal. 2018, 8, 926. |
[9] | (f) Cresswell, A. J.; Eey, S. T.-C.; Denmark, S. E. Nat. Chem. 2015, 7, 146. |
[10] | Yu, L.; Wang, J.; Chen, T.; Ding, K.; Pan, Y. Chin. J. Org. Chem. 2013, 33, 1096. (in Chinese) |
[10] | ( 俞磊, 王俊, 陈天, 丁克鸿, 潘毅, 有机化学, 2013, 33, 1096.) |
[11] | (a) Liao, L.; Zhang, H.; Zhao, X. ACS Catal. 2018, 8, 6745. |
[11] | (b) Wei, W.; Cui, H.; Yue, H.; Yang, D. Green Chem. 2018, 20, 3197. |
[11] | (c) Wang, T.; Jing, X.; Chen, C.; Yu, L. J. Org. Chem. 2017, 82, 9342. |
[11] | (d) Deng, Z.; Wei, J.; Liao, L.; Huang, H.; Zhao, X. Org. Lett. 2015, 17, 1834. |
[12] | Trenner, J.; Depken, C.; Weber, T.; Breder, A. Angew. Chem., Int. Ed. 2013, 52, 8952. |
[13] | Jing, X.; Yuan, D.; Yu, L. Adv. Synth. Catal. 2017, 359, 1194. |
[14] | Selected examples: (a) Zhang, G. F.; Wen, X.; Wang, Y.; Mo, W. M.; Ding, C. R. Prog. Chem. 2012, 24, 361. |
[14] | (b) Zheng, Y.; Wu, A.; Ke, Y.; Cao, H.; Yu, L. Chin. Chem. Lett. 2019, 30, 937. |
[14] | (c) Wang, F.; Chen, T.; Shi, Y.; Yu, L. Asian J. Org. Chem. 2021, 10, 614. |
[14] | (d) Deng, X.; Qian, R.; Zhou, H.; Yu, L. Chin. Chem. Lett. 2021, 32, 1029. |
[14] | (e) Song, J. H.; Bae, S. M.; Lee, E. J.; Cho, J. H.; Jung, D. I. Asian J. Chem. 2020, 32, 1676. |
[15] | (a) Grirrane, A.; Corma, A.; Garcia, H. J. Catal. 2009, 268, 350. |
[15] | (b) Reitsema, R. J. Org. Chem. 1958, 23, 2038. |
[15] | (c) Royals, E. E.; Horne, S. E. J. J. Am. Chem. Soc. 1951, 73, 5856. |
[16] | Selected examples: (a) Choudhare, T. S.; Wagare, D. S.; Shirsath, S. E.; Netankar, P. D. J. Chem. Sci. 2021, 133, 69. |
[16] | (b) Hart-Davis, J.; Battioni, P.; Boucher, J.-L.; Mansuy, D. J. Am. Chem. Soc. 1998, 120, 12524. |
[16] | (c) Yang, S. H.; Chang, S. Org. Lett. 2001, 4209. |
[16] | (d) Ishihara, K.; Furuya, Y.; Yamamoto, H. Angew. Chem., Int. Ed. 2002, 41, 2983. |
[16] | (e) Yamaguchi, K.; Fujiwara, H.; Ogasawara, Y.; Kotani, M.; Mizuno, N. Angew. Chem., Int. Ed. 2007, 46, 3922. |
[16] | (f) Rai, A.; Yadav, L. D. S. Eur. J. Org. Chem. 2013, 2013, 1889. |
[16] | (g) Tambara, K.; Pantos, G. D. Org. Biomol. Chem. 2013, 11, 2466. |
[17] | (a) Yu, L.; Li, H.; Zhang, X.; Ye, J.; Liu, J.; Xu, Q.; Lautens, M. Org. Lett. 2014, 16, 1346. |
[17] | (b) Chen, C.; Zhang, X.; Cao, H. Wang, F.; Yu, L.; Xu, Q. Adv. Synth. Catal. 2019, 361, 603. |
[18] | (a) Kakroudi, M. A.; Kazemi, F.; Kaboudin, B. J. Mol. Catal. A: Chem. 2014, 392, 112. |
[18] | (b) Abedi, S.; Karimi, B.; Kazemi, F.; Bostina, M.; Vali, H. Org. Biomol. Chem. 2013, 11, 416. |
[19] | Belladona, A. L.; Cervo, R.; Alves, D.; Barcellos, T.; Cargnelutti, R.; Schumacher, R. F. Tetrahedron Lett. 2020, 61, 152035. |
[20] | Reich, H. J.; Wollowitz, S.; Trend, J. E.; Chow, F.; Wendelborn, D. F. J. Org. Chem. 1978, 43, 1697. |
[21] | Golebiewski, W. M.; Gucma, M. J. Heterocycl. Chem. 2006, 43, 509. |
[22] | (a) Lamani, M.; Prabhu, K. R. Angew. Chem., Int. Ed. 2010, 49, 6622. |
[22] | (b) Mori, N.; Togo, H. Synlett 2005, 1456. |
[23] | Leggio, A.; Gallo, S.; Liguori, A. Tetrahedron Lett. 2017, 58, 1512. |
[24] | Liu, J.; Li, H. Chen, K.-X.; Zuo, J.-P.; Guo, Y.-W.; Tang, W.; Li, X.-W. J. Med. Chem. 2018, 61, 11298. |
/
〈 |
|
〉 |