REVIEWS

Research Progress on Density Functional Theory Study of Palladium-Catalyzed C—H Functionalization to Form C—X (X=O, N, F, I, …) Bonds

  • Yubing Shi ,
  • Wenji Bai ,
  • Weihua Mu ,
  • Jiangping Li ,
  • Jiawei Yu ,
  • Bing Lian
Expand
  • a Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500
    b Beijing No. 8 High School, Beijing 100033
*Corresponding author. E-mail:

Received date: 2021-10-19

  Revised date: 2021-12-12

  Online published: 2022-01-11

Supported by

National Natural Science Foundation of China(21763033); Top Young Talents of Yunnan Ten Thousand People Plan

Abstract

Transition metal-catalyzed C—H functionalization is an effective method for constructing C—X (X=O, N, F, I, …) bonds, which plays a crucial role not only in traditional organic synthesis, pesticides and medicine areas, but also in generating skeletons of biologically active natural products containing C—X heterocycles. Due to its high reaction efficiency, good atomic economy and environmental friendliness, palladium-catalyzed C—H functionalization has been demonstrated as one of the focus topics in the field of transition metal-catalyzed construction of C—X bonds for decades. Based on previous experimental results, density functional theory (DFT) has been employed to study the palladium-catalyzed C—H functionalization for constructing C—X bonds in detail, for obtaining more information about reaction process, such as microscopic reaction mechanism and selectivity regulation principles, and thus inspire new ideas for improving the selectivity and reactivity of palladium-catalyzed C—H functionalization in constructing C—X bonds. Herein, the latest density functional theory research results on palladium-catalyzed C—H functionalization in constructing C—X (X=O, N, F, I, …) bonds are summarized, with emphasis on the corresponding computational results about microcosmic reaction mechanism and selectivity controlling. The present issues and prospects of future development in this field are also summarized and forecasted in the end.

Cite this article

Yubing Shi , Wenji Bai , Weihua Mu , Jiangping Li , Jiawei Yu , Bing Lian . Research Progress on Density Functional Theory Study of Palladium-Catalyzed C—H Functionalization to Form C—X (X=O, N, F, I, …) Bonds[J]. Chinese Journal of Organic Chemistry, 2022 , 42(5) : 1346 -1374 . DOI: 10.6023/cjoc202110027

References

[1]
Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem., Int. Ed. 2009, 48, 5094.
[2]
Daugulis, O.; Do, H.-Q.; Shabashov, D. Acc. Chem. Res. 2009, 42, 1074.
[3]
Ackermann, L.; Vicente, R.; Kapdi, A. R. Angew. Chem., Int. Ed. 2009, 48, 9792.
[4]
Zhang, S.; Shi, L.; Ding, Y. J. Am. Chem. Soc. 2011, 133, 20218.
[5]
Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147.
[6]
Zeni, G.; Larock, R. C. Chem. Rev. 2004, 104, 2285.
[7]
Patil, N. T.; Yamamoto, Y. Chem. Rev. 2008, 108, 3395.
[8]
Wu, M.-J.; Chu, J.-H. J. Chin. Chem. Soc. 2020, 67, 399.
[9]
Liao, G.; Zhang, T.; Lin, Z.-K.; Shi, B.-F. Angew. Chem., Int. Ed. 2020, 59, 19773.
[10]
Gramage-Doria, R. Chem.-Eur. J. 2020, 26, 9688.
[11]
Liao, K.; Negretti, S.; Musaev, D. G.; Bacsa, J.; Davies, H. M. L. Nature 2016, 533, 230.
[12]
Kumar, P.; Nagtilak, P. J.; Kapur, M. New J. Chem. 2021, 45, 13692.
[13]
Das, R.; Kapur, M. J. Org. Chem. 2017, 82, 1114.
[14]
Youn, S. W.; Cho, C.-G. Org. Biomol. Chem. 2021, 19, 5028.
[15]
Luo, H.-H.; Pei, N.; Zhang, J. Chin. J. Org. Chem. 2021, 41, 2990. (in Chinese)
[15]
(罗欢欢, 裴娜, 张敬, 有机化学, 2021, 41, 2990.)
[16]
Zou, X.-L.; Xu, X.-M. Chin. J. Org. Chem. 2021, 41, 2610. (in Chinese)
[16]
(邹晓亮, 徐森苗, 有机化学, 2021, 41, 2610.)
[17]
Marchese, A. D.; Adrianov, T.; Lautens, M. Angew. Chem., Int. Ed. 2021, 60, 16750.
[18]
Vijaykumar, M.; Punji, B. Synthesis 2021, 53, 2935.
[19]
Yamaguchi, J.; Yamaguchi, A. D.; Itami, K. Angew. Chem., Int. Ed. 2012, 51, 8960.
[20]
Newhouse, T.; Baran, P. S. Angew. Chem., Int. Ed. 2011, 50, 3362.
[21]
Jazzar, R.; Hitce, J.; Renaudat, A.; Sofack-Kreutzer, J.; Baudoin, O. Chem. Eur. J. 2010, 16, 2654.
[22]
Chen, D. Y. K.; Youn, S. W. Chem.-Eur. J. 2012, 18, 9452.
[23]
Roughley, S. D.; Jordan, A. M. J. Med. Chem. 2011, 54, 3451.
[24]
Chao, J.; Li, H.; Cheng, K. W.; Yu, M. S.; Chang, R. C.; Wang, M. J. Nutr. Biochem. 2010, 21, 482.
[25]
Chen, T.-B.; Zhang, M. Chin. J. Org. Chem. 2015, 35, 813. (in Chinese)
[25]
(陈天保, 章明, 有机化学, 2015, 35, 813.)
[26]
Zhao, k.; Yang, L.; Liu, J.-H.; Xia, C.-G. Chin. J. Org. Chem. 2018, 38, 2833. (in Chinese)
[26]
(赵康, 杨磊, 刘建华, 夏春谷, 有机化学, 2018, 38, 2833.)
[27]
Timsina, Y. N.; Gupton, B. F.; Ellis, K. C. ACS Catal. 2018, 8, 5732.
[28]
Zhang, M.; Wang, Q.; Peng, Y.; Chen, Z.; Wan, C.; Chen, J.; Zhao, Y.; Zhang, R.; Zhang, A. Q. Chem. Commun. 2019, 55, 13048.
[29]
Petrone, D. A.; Ye, J.; Lautens, M. Chem. Rev. 2016, 116, 8003.
[30]
Das, R.; Kapur, M. Asian J. Org. Chem. 2018, 7, 1524.
[31]
Ma, X.; Mo, Q.; Chang, J.; Xie, K. Synth. Commun. 2018, 48, 1403.
[32]
Mboyi, C. D.; Testa, C.; Reeb, S.; Genc, S.; Cattey, H.; Fleurat-Lessard, P.; Roger, J.; Hierso, J.-C. ACS Catal. 2017, 7, 8493.
[33]
Xu, J.; Wei, Z.; Li, J.-R. Chin. J. Org. Chem. 2012, 32, 1208. (in Chinese)
[33]
(徐娟, 魏真, 李加荣, 有机化学, 2012, 32, 1208.)
[34]
Zhou, B.; Lu, A.; Zhang, Y. Synlett 2019, 30, 685.
[35]
Borpatra, P. J.; Deka, B.; Deb, M. L.; Baruah, P. K. Org. Chem. Front. 2019, 6, 3445.
[36]
Boller, T. M.; Murphy, J. M.; Hapke, M.; Ishiyama, T.; Miyaura, N.; Hartwig, J. F. J. Am. Chem. Soc. 2005, 127, 14263.
[37]
Plata, R. E.; Singleton, D. A. J. Am. Chem. Soc. 2015, 137, 3811.
[38]
Bonney, K. J.; Schoenebeck, F. Chem. Soc. Rev. 2014, 43, 6609.
[39]
Houk, K. N. Chem. Soc. Rev. 2014, 43, 4905.
[40]
Cheng, G.-J.; Zhang, X.; Chung, L. W.; Xu, L.; Wu, Y.-D. J. Am. Chem. Soc. 2015, 137, 1706.
[41]
Zhang, X.; Chung, L. W.; Wu, Y.-D. Acc. Chem. Res. 2016, 49, 1302.
[42]
Jiang, Y.-Y.; Man, X.; Bi, S. Sci. China Chem. 2016, 59, 1448.
[43]
Zhang, K.-R.; Wang, Y.-Y.; Zhu, H.-D.; Peng, Q. Chin. J. Org. Chem. 2021, 41, 3995. (in Chinese)
[43]
(张凯瑞, 王亚亚, 朱宏丹, 彭谦, 有机化学, 2021, 41, 3995.)
[44]
Balcells, D.; Clot, E.; Eisenstein, O. Chem. Rev. 2010, 110, 749.
[45]
Musaev, D. G.; Figg, T. M.; Kaledin, A. L. Chem. Soc. Rev. 2014, 43, 5009.
[46]
Sperger, T.; Sanhueza, I. A.; Kalvet, I.; Schoenebeck, F. Chem. Rev. 2015, 115, 9532.
[47]
Davies, D. L.; Macgregor, S. A.; McMullin, C. L. Chem. Rev. 2017, 117, 8649.
[48]
Yang, Y.-F.; She, Y. Int J Quantum Chem. 2018, 118, e25723.
[49]
Xie, H.; Fan, T.; Lei, Q.; Fang, W. Sci. China Chem. 2016, 59, 1432.
[50]
Yang, B.; Schouten, A.; Ess, D. H. J. Am. Chem. Soc. 2021, 143, 8367.
[51]
Gygi, D.; Gonzalez, M. I.; Hwang, S. J.; Xia, K. T.; Qin, Y.; Johnson, E. J.; Gygi, F.; Chen, Y.-S.; Nocera, D. G. J. Am. Chem. Soc. 2021, 143, 6060.
[52]
Esteruelas, M. A.; Martínez, A.; Oliván, M.; Oñate, E. J. Am. Chem. Soc. 2020, 142, 19119.
[53]
Bera, M.; Maji, A.; Sahoo, S. K.; Maiti, D. Angew. Chem., Int. Ed. 2015, 54, 8515.
[54]
He, J.; Wasa, M.; Chan, K. S. L.; Shao, Q.; Yu, J.-Q. Chem. Rev. 2017, 117, 8754.
[55]
Salazar, C. A.; Gair, J. J.; Flesch, K. N.; Guzei, I. A.; Lewis, J. C.; Stahl, S. S. Angew. Chem., Int. Ed. 2020, 59, 10873.
[56]
Bai, Z.; Cai, C.; Sheng, W.; Ren, Y.; Wang, H. Angew. Chem., Int. Ed. 2020, 59, 14686.
[57]
Ezawa, T.; Sohtome, Y.; Hashizume, D.; Adachi, M.; Akakabe, M.; Koshino, H.; Sodeoka, M. J. Am. Chem. Soc. 2021, 143, 9094.
[58]
Oliveira, J. C. A.; Dhawa, U.; Ackermann, L. ACS Catal. 2021, 11, 1505.
[59]
Sahharova, L. T.; Gordeev, E. G.; Eremin, D. B.; Ananikov, V. P. ACS Catal. 2020, 10, 9872.
[60]
Kang, K.; Huang, L.; Weix, D. J. J. Am. Chem. Soc. 2020, 142, 10634.
[61]
Yoshino, T.; Matsunaga, S. ACS Catal. 2021, 11, 6455.
[62]
Zhu, M.-H.; Zhang, X.-W.; Usman, M.; Cong, H.; Liu, W.-B. ACS Catal. 2021, 11, 5703.
[63]
Kato, Y.; Lin, L.; Kojima, M.; Yoshino, T.; Matsunaga, S. ACS Catal. 2021, 11, 4271.
[64]
Liu, J.-R.; Duan, Y.-Q.; Zhang, S.-Q.; Zhu, L.-J.; Jiang, Y.-Y.; Bi, S.; Hong, X. Org. Lett. 2019, 21, 2360.
[65]
Veerakumar, P.; Thanasekaran, P.; Lu, K.-L.; Lin, K.-C.; Rajagopal, S. ACS Sustainable Chem. Eng. 2017, 5, 8475.
[66]
Rao, D. Y.; Anoop, A. J. Phys. Chem. C 2020, 124, 582.
[67]
Wang, Z.; Fu, Y.; Zhang, Q.; Liu, H.; Wang, J. J. Org. Chem. 2020, 85, 7683.
[68]
Favier, L.; Pla, D.; Gómez, M. Chem. Rev. 2020, 120, 1146.
[69]
Anand, M.; Sunoj, R. B. Org. Lett. 2011, 13, 4802.
[70]
Anand, M.; Sunoj, R. B. Organometallics 2012, 31, 6466.
[71]
Lian, B.; Zhang, L.; Chass, G. A.; Fang, D.-C. J. Org. Chem. 2013, 78, 8376.
[72]
Sun, Y.-H.; Sun, T.-Y.; Wu, Y.-D.; Zhang, X.; Rao, Y. Chem. Sci. 2016, 7, 2229.
[73]
Maji, A.; Bhaskararao, B.; Singha, S.; Sunoj, R. B.; Maiti, D. Chem. Sci. 2016, 7, 3147.
[74]
Simmons, E. M.; Hartwig, J. F. Angew. Chem., Int. Ed. 2012, 51, 3066.
[75]
Yang, Z.-W.; Zhang, Q.; Jiang, Y.-Y.; Li, L.; Xiao, B.; Fu, Y. Chem. Commun. 2016, 52, 6709.
[76]
Yu, Y.; Lu, Q.; Chen, G.; Li, C.; Huang, X. Angew. Chem., Int. Ed. 2018, 57, 319.
[77]
Jiang, J.; Yuan, D.; Ma, C.; Song, W.; Lin, Y.; Hu, L.; Zhang, Y. Org. Lett. 2021, 23, 279.
[78]
Ke, Z.; Cundari, T. R. Organometallics 2010, 29, 821.
[79]
Yoo, E. J.; Ma, S.; Mei, T.-S.; Chan, K. S. L.; Yu, J.-Q. J. Am. Chem. Soc. 2011, 133, 7652.
[80]
Anand, M.; Sunoj, R. B.; Schaefer, H. F. J. Am. Chem. Soc. 2014, 136, 5535.
[81]
Anand, M.; Sunoj, R. B.; Schaefer, H. F. ACS Catal. 2016, 6, 696.
[82]
Zhou, Y.; Bao, X. Org. Lett. 2016, 18, 4506.
[83]
He, G.; Lu, G.; Guo, Z.; Liu, P.; Chen, G. Nature Chem. 2016, 8, 1131.
[84]
Gary, J. B.; Sanford, M. S. Organometallics 2011, 30, 6143.
[85]
Bandara, H. M. D.; Jin, D.; Mantell, M. A.; Field, K. D.; Wang, A.; Narayanan, R. P.; Deskins, N. A.; Emmert, M. H. Catal. Sci. Technol. 2016, 6, 5304.
[86]
Li, B.-W.; Wang, M.-Y.; Fang, S.; Liu, J.-Y. Organometallics 2019, 38, 2189.
[87]
Testa, C.; Roger, J.; Scheib, S.; Fleurat-Lessard, P.; Hierso, J.-C. Adv. Synth. Catal. 2015, 357, 2913.
[88]
Furuya, T.; Benitez, D.; Tkatchouk, E.; Strom, A. E.; Tang, P.; Goddard, W. A.; Ritter, T. J. Am. Chem. Soc. 2010, 132, 3793.
[89]
Cui, L.; Saeys, M. Chem. Cat. Chem. 2011, 3, 1060.
[90]
Katcher, M. H.; Norrby, P.-O.; Doyle, A. G. Organometallics 2014, 33, 2121.
[91]
Mao, Y.-J.; Luo, G.; Hao, H.-Y.; Xu, Z.-Y.; Lou, S.-J.; Xu, D.-Q. Chem. Commun. 2019, 55, 14458.
[92]
Haines, B. E.; Xu, H.; Verma, P.; Wang, X.-C.; Yu, J.-Q.; Musaev, D. G. J. Am. Chem. Soc. 2015, 137, 9022.
[93]
Zhou, M.-J.; Yang, T.-L.; Dang, L. J. Org. Chem. 2016, 81, 1006.
[94]
Saito, H.; Yamamoto, K.; Sumiya, Y.; Liu, L.-J.; Nogi, K.; Maeda, S.; Yorimitsu, H. Chem. Asian J. 2020, 15, 2442.
[95]
Jaiswal, Y.; Kumar, Y.; Kumar, A. Org. Biomol. Chem. 2019, 17, 6809.
[96]
Zhou, Y.-P.; Wang, M.-Y.; Fang, S.; Chen, Y.; Liu, J.-Y. RSC Adv. 2016, 6, 18300.
[97]
Tang, B.-C.; Lin, W.-X.; Chen, X.-L.; He, C.; Ma, J.-T.; Wu, Y.-D.; Lan, Y.; Wu, A.-X. Nat. Commun. 2020, 11, 5662.
[98]
Garçon, M.; Mun, N. W.; White, A. J. P.; Crimmin, M. R. Angew. Chem., Int. Ed. 2021, 60, 6145.
[99]
Garçon, M.; White, A. J. P.; Crimmin, M. R. Chem. Commun. 2018, 54, 12326.
[100]
Jazzar, R.; Hitce, J.; Renaudat, A.; Sofack-Kreutzer, J.; Baudoin, O. Chem.-Eur. J. 2010, 16, 2654.
[101]
Baudoin, O. Chem. Soc. Rev. 2011, 40, 4902.
[102]
Chen, F.-J.; Zhao, S.; Hu, F.; Chen, K.; Zhang, Q.; Zhang, S.-Q.; Shi, B.-F. Chem. Sci. 2013, 4, 4187.
[103]
Munz, D.; Meyer, D.; Strassner, T. Organometallics 2013, 32, 3469.
[104]
Cundari, T. R.; Prince, B. M. J. Organomet. Chem. 2011, 696, 3982.
[105]
Prince, B. M. Comput. Theor. Chem. 2019, 1162, 112503.
[106]
Wang, M.; Yang, Y.; Fan, Z.; Cheng, Z.; Zhu, W.; Zhang, A. Chem. Commun. 2015, 51, 3219.
[107]
Canty, A. J.; Ariafard, A.; Camasso, N. M.; Higgs, A. T.; Yates, B. F.; Sanford, M. S. Dalton. Trans. 2017, 46, 3742.
[108]
Buettner, C. S.; Willcox, D.; Chappell, B. G. N.; Gaunt, M. J. Chem. Sci. 2019, 10, 83.
[109]
Pan, J.; Su, M.; Buchwald, S. L. Angew. Chem., Int. Ed. 2011, 50, 8647.
[110]
Iglesias, Á.; Álvarez, R.; de Lera, Á. R.; Muñiz, K. Angew. Chem., Int. Ed. 2012, 51, 2225.
[111]
McNally, A.; Haffemayer, B.; Collins, B. S. L.; Gaunt, M. J. Nature 2014, 510, 129.
[112]
Zhang, Q.; Yu, H.; Fu, Y. Sci. China Chem. 2015, 58, 1316.
[113]
Zhang, Y.; Qi, Z.-H.; Ruan, G.-Y.; Zhang, Y.; Liu, W.; Wang, Y. RSC Adv. 2015, 5, 71586.
[114]
Smalley, A. P.; Gaunt, M. J. J. Am. Chem. Soc. 2015, 137, 10632.
[115]
Zakrzewski, J.; Smalley, A. P.; Kabeshov, M. A.; Gaunt, M. J. Lapkin, A. A. Angew. Chem., Int. Ed. 2016, 55, 8878.
[116]
Duarte, F. J. S.; Poli, G.; Calhorda, M. J. ACS Catal. 2016, 6, 1772.
[117]
Tong, H.-R.; Zheng, W.; Lv, X.; He, G.; Liu, P.; Chen, G. ACS Catal. 2020, 10, 114.
[118]
Sun, H.; Zhang, Y.; Chen, P.; Wu, Y.-D.; Zhang, X.; Huang, Y. Adv. Synth. Catal. 2016, 358, 1946.
[119]
Chen, Y.-Q.; Singh, S.; Wu, Y.; Wang, Z.; Hao, W.; Verma, P.; Qiao, J. X.; Sunoj, R. B.; Yu, J.-Q. J. Am. Chem. Soc. 2020, 142, 9966.
[120]
Giri, R.; Lan, Y.; Liu, P.; Houk, K. N.; Yu, J.-Q. J. Am. Chem. Soc. 2012, 134, 14118.
[121]
Deb, A.; Singh, S.; Seth, K.; Pimparkar, S.; Bhaskararao, B.; Guin, S.; Sunoj, R. B.; Maiti, D. ACS Catal. 2017, 7, 8171.
[122]
He, J.; Shao, Q.; Wu, Q.; Yu, J.-Q. J. Am. Chem. Soc. 2017, 139, 3344.
[123]
Xing, Y.-Y.; Liu, J.-B.; Sun, Q.-M.; Sun, C.-Z.; Huang, F.; Chen, D.-Z. J. Org. Chem. 2019, 84, 10690.
Outlines

/