REVIEWS

Advances on the Synthesis of N—N Bonds

  • Weizhe Zhao ,
  • Jiali Xu ,
  • Fan Yang ,
  • Xianghua Zeng
Expand
  • College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001
*Corresponding author. E-mail:

Received date: 2021-11-11

  Revised date: 2021-12-16

  Online published: 2022-01-11

Supported by

Students Research Training(CD8517211375); National Natural Science Foundation of Zhejiang Province(LY17B030011)

Abstract

Nitrogen-nitrogen bonds are widely found in drugs, nature products and organic materials. Design and synthesis of nitrogen-nitrogen motifs with high efficiency have always been an important issue in organic chemistry. The nitrogen sources such as amines, nitriles, nitroso, and azides or other N-functionalized reagents, are commonly exist in organic compounds. Direct N-N coupling of these nitrogen sources provides a more convergent synthesis strategy to produce different heterocycles and hydrazines containing the N-N motif. In this paper, the intermolecular and intramolecular formation of N—N bond in recent years is reviewed, and the difficulties and future development of this method are prospected.

Cite this article

Weizhe Zhao , Jiali Xu , Fan Yang , Xianghua Zeng . Advances on the Synthesis of N—N Bonds[J]. Chinese Journal of Organic Chemistry, 2022 , 42(5) : 1336 -1345 . DOI: 10.6023/cjoc202111019

References

[1]
(a) Blair, L. M.; Sperry, J. N. J. Nat. Prod. 2013, 76, 794.
[1]
(b) Zhou, C.-H.; Wang, Y. Curr. Med. Chem. 2012, 19, 239.
[1]
(c) Ku?cu?kgu?zel, S?. G.; S?enkardes, S. Eur. J. Med. Chem. 2015, 97, 786.
[1]
(d) Waring, D. R.; Hallas, G. The Chemistry and Application of Dyes, Springer Science & Business Media, New York, 2013.
[2]
(a) Ragnarsson, U. Chem. Soc. Rev. 2001, 30, 205.
[2]
(b) Guo, Q. H.; Lu, Z. Synthesis 2017, 49, 3835.
[2]
(c) Wolter, M., Klapars, A.; Buchwald, S. L. Org. Lett. 2001, 3, 3803.
[3]
Chattaway, F. D.; Ingle, H. J. Chem. Soc., Trans. 1895, 67, 1090.
[4]
Kajimoto, T.; Takahashi, H.; Tsuji, J. Bull. Chem. Soc. Jpn. 1982, 55, 3673.
[5]
Li, Z.; Li, B.; Li, C. Wang, H. Chem. Res. 2011, 22, 1. (in Chinese)
[5]
(李宗耀, 李彪, 李春丽, 王华, 化学研究, 2011, 22, 1.)
[6]
Zhu, Y.; Shi, Y. Org. Lett. 2013, 15, 1942.
[7]
Ryan, M. C.; Martinelli, J. R.; Stahl, S. S. J. Am. Chem. Soc. 2018, 140, 9074.
[8]
Yin, D.; Jin, J. Eur. J. Org. Chem. 2019, 5646.
[9]
Ren, L.; Wang, M.; Fang, B.; Yu, W.; Chang, J. Org. Biomol. Chem. 2019, 17, 3446.
[10]
Lv, S.; Han, X.; Wang, J.-Y.; Zhou, M.; Wu, Y.; Ma, L.; Niu, L.; Gao, W.; Zhou, J.; Hu, W.; Cui, Y.; Chen, J. Angew. Chem., Int. Ed. 2020, 59, 11583.
[11]
Zhao, W.; Zeng, X.; Huang, L.; Qiu, S.; Xie, J.; Yu, H.; Wei, Y. Chem. Commun. 2021, 57, 7677.
[12]
Rosen, B. R.; Werner, E. W.; O’Brien, A. G.; Baran, P. S. J. Am. Chem. Soc. 2014, 136, 5571.
[13]
Yan, X.-M.; Chen, Z.-M.; Yang, F.; Huang, Z.-Z. Synlett 2011, 569.
[14]
Reddy, C. B. R.; Reddy, S. R.; Naidu, S. Catal. Commun. 2014, 56, 50.
[15]
Breising, V. M.; Kayser, J. M.; Kehl, A.; Schollmeyer, D.; Liermann, J. C.; Waldvogel, S. R. Chem. Commun. 2020, 56, 4348.
[16]
Wang, H.; Jung, H.; Song, F.; Zhu, S.; Bai, Z.; Chen, D.; He, G.; Chang, S.; Chen, G. Nat. Chem. 2021, 13, 378.
[17]
Vemuri, P. Y.; Patureau, F. W. Org. Lett. 2021, 23, 3902.
[18]
Ou, Y.; Yang, T.; Tang, N.; Yin, S.-F.; Kambe, N.; Qiu, R. Org. Lett. 2021, 23, 6417.
[19]
Li, G.; Miller, S. P.; Radosevich, A. T. J. Am. Chem. Soc. 2021, 143, 14464.
[20]
Ueda, S.; Nagasawa, H. J. Am. Chem. Soc. 2009, 131, 15080.
[21]
Meng, X.; Yu, C.; Zhao, P. RSC Adv. 2014, 4, 8612.
[22]
Mu, Q.-C.; Lv, J.-Y.; Chen, M.-Y.; Bai, X.-F.; Chen, J.; Xia, C.-G.; Xu, L.-W. RSC Adv. 2017, 7, 37208.
[23]
Chen, Z.; Yan, Q.; Liu, Z.; Xu, Y.; Zhang, Y. Angew. Chem., Int. Ed. 2013, 52, 13324.
[24]
Chen, Z.; Yan, Q.; Liu, Z.; Zhang, Y. Chem.-Eur. J. 2014, 20, 17635.
[25]
Guru, M. M.; Punniyamurthy, T. J. Org. Chem. 2012, 77, 5063.
[26]
Panda, S.; Maity, P.; Manna, D. Org. Lett. 2017, 19, 1534.
[27]
Neumann, J. J.; Suri, M.; Glorius, F. Angew. Chem., Int. Ed. 2010, 49, 7790.
[28]
Chen, B.; Zhu, C.; Tang, Y.; Ma, S. Chem. Commun. 2014, 50, 7677.
[29]
Wu, Q.; Zhang, Y.; Cui, S. Org. Lett. 2014, 16 1350.
[30]
Pearce, A. J.; Harkins, R. P.; Reiner, B. R.; Wotal, A. C.; Dunscomb, R. J.; Tonks, I. A. J. Am. Chem. Soc. 2020, 142, 4390.
[31]
Huang, H.; Cai, J.; Ji, X.; Xiao, F.; Chen, Y.; Deng, G.-J. Angew. Chem., Int. Ed. 2016, 55, 307.
[32]
Zheng, Q.-Z.; Feng, P.; Liang, Y.-F.; Jiao, N. Org. Lett. 2013, 15, 4262.
[33]
Yu, D.-G.; Suri, M.; Glorius, F. J. Am. Chem. Soc. 2013, 135, 8802.
[34]
Wang, Q.; Li, X. Org. Lett. 2016, 18, 2102.
[35]
Li, L.; Wang, L.; Yu, S.; Yang, X.; Li, X. Org. Lett. 2016, 18, 3662.
[36]
Peng, J.; Xie, Z.; Chen, M.; Wang, J.; Zhu, Q. Org. Lett. 2014, 16, 4702.
[37]
Zhu, J. S.; Li, C. J.; Tsui, K. Y.; Kraemer, N.; Son, J.; Haddadin, M. J.; Tantillo, D. J.; Kurth, M. J. J. Am. Chem. Soc. 2019, 141, 6247.
[38]
Klenov, M. S.; Guskov, A. A.; Anikn, O. V.; Churakov, A. M.; Strelenko, Y. A.; Fedyanin, I. V.; Lyssenko, K. A.; Tartakovsky, V. A. Angew. Chem., Int. Ed. 2016, 55, 11472.
[39]
Mondal, R. R.; Klhamarui, S.; Maiti, D. K. Org. Lett. 2017, 19, 5964.
[40]
Cai, Y.-M.; Zhang, X.; An, C.; Yang, Y.-F.; Liu, W.; Gao, W.-X.; Huang, X.-B.; Zhou, Y.-B.; Liu, M.-C.; Wu, H.-Y. Org. Chem. Front. 2019, 6, 1481.
[41]
Correa, A.; Tellitu, I.; Domínguez, E.; SanMartin, R. J. Org. Chem. 2006, 71, 3501.
[42]
Dai, G.; Yang, L.; Zhou, W. Org. Chem. Front. 2017, 4, 229.
[43]
Liu, S.; Xu, L.; Wei, Y. J. Org. Chem. 2019, 84, 1596.
[44]
Stokes, B. J.; Vogel, C. V.; Urnezis, L. K.; Pan, M.; Driver, T. G. Org. Lett. 2010, 12, 2884.
[45]
Hu, J.; Cheng, Y.; Yang, Y.; Rao, Y. Chem. Commun. 2011, 47, 10133.
[46]
Liu, J.; Liu, N.; Yang, Q.; Wang, L. Org. Chem. Front. 2021, 8, 5296.
[47]
Hutchinson, I.; Stevens, M. F. G. Org. Biomol. Chem. 2007, 5, 114.
[48]
Lin, W.-C.; Yang, D.-Y. Org. Lett. 2013, 18, 4862.
[49]
Nykaza, T. V.; Harrison, T. S.; Ghosh, A.; Putnik, R. A.; Radosevich, A. T. J. Am. Chem. Soc. 2017, 139, 6839.
[50]
Sawant, D.; Kumar, R.; Maulik, P. R.; Kundu, B. Org. Lett. 2006, 8, 1525.
[51]
Chen, C.-Y.; Tang, G.; He, F.; Wang, Z.; Jing, H.; Faessler, R. Org. Lett. 2016, 18, 1690.
[52]
Sajadi, M. S.; Darehkordi, A.; Hosseini, S. M. S. Tetrahedron 2021, 84, 132023.
[53]
Evans, L. E.; Cheeseman, M. D.; Jones, K. Org. Lett. 2012, 14, 3546.
[54]
Fu, X.; Huang, P.; Zhou, G.; Hu, Y.; Dong, D. Tetrahedron 2011, 67, 6347.
[55]
Zhang, Z.; Li, J.; Huang, G.; Sun, K.; Zhang, G.; Ma, N.; Liu, Q.; Liu, T. Chin. J. Chem. 2016, 34, 1309.
[56]
Gieshoff, T.; Schollmeyer, D.; Waldvogel, S. R. Angew. Chem., Int. Ed. 2016, 55, 9437.
[57]
Gieshoff, T.; Keh, A.; Schollmeyer, D.; Moeller, K. D.; Waldvogel, S. R. J. Am. Chem. Soc. 2017, 139, 12317.
[58]
Zhang, Y.; Duan, D.; Zhong, Y.; Guo, X.-A.; Guo, J.; Gou, J.; Gao, Z.; Yu, B. Org. Lett. 2019, 21, 4960.
[59]
Martin, J. S.; Zeng, X.; Chen, X.; Miller, C.; Han, C.; Lin, Y.; Yamamoto, N.; Wang, X.; Yazdi, S.; Yan, Y.; Beard, M. C.; Yan, Y. J. Am. Chem. Soc. 2021, 143, 11361.
[60]
Daniels, R.; Martin, B. D. J. Org. Chem. 1962, 27, 178.
[61]
Hirayama, T.; Ueda, S.; Okada, T.; Tsurue, N.; Okuda, K.; Nagasawa, H. Chem. Eur. J. 2014, 20, 4156.
[62]
Bartels, B.; Bolas, C. G.; Cueni, P.; Fantasia, S. Gaeng, N.; Trita, A. S. J. Org. Chem. 2015, 80, 1249.
[63]
Fritsche, R. F.; Theumer, G.; Kataeva, O.; Knōlker, H.-J. Angew. Chem., Int. Ed. 2017, 56, 549.
[64]
Kehl, A.; Gieshoff, T.; Schollmeyer, D.; Waldvogel, S. R. Chem. Eur. J. 2018, 24, 590.
[65]
Mei, G.-J.; Wong, J. J.; Zheng, W.; Nangia, A. A.; Houk, K. N.; Lu, Y. Chem 2021, 7, 2743.
Outlines

/