Chinese Journal of Organic Chemistry >
Oxidation of Sulfides with SO2F2/H2O2/Base
Received date: 2021-11-13
Revised date: 2021-12-31
Online published: 2022-01-21
Supported by
National Natural Science Foundation of China(21362022)
A novel oxidation system SO2F2/H2O2/base was investigated for the oxidation of sulfides and the corresponding sulfones were smoothly generated in good to excellent yields. The effects of base and solvent on oxidation were studied. The results showed that this oxidation system is tolerable to a variety of functional groups. A distinct advantage of this method is that by-products resulting from the use of the oxidation system are all water-soluble inorganic compounds, and can be conveniently removed after work-up process, therefore purification of the products is greatly simplified.
Key words: sulfuryl fluoride; hydrogen peroxide; oxidation; sulfides; sulfones
Yi Zhou , Zhuojun Li , Minghui Hu , Zhaohua Yan , Sen Lin . Oxidation of Sulfides with SO2F2/H2O2/Base[J]. Chinese Journal of Organic Chemistry, 2022 , 42(5) : 1545 -1550 . DOI: 10.6023/cjoc202111022
[1] | (a) Liu, N.; Liang, S.; Manolikakes, G. Synthesis 2016, 48, 1939. |
[1] | (b) Pritzius, A. B.; Breit, B. Angew. Chem., Int. Ed. 2015, 54, 3121. |
[1] | (c) Voutyritsa, E.; Triandafillidi, I.; Kokotos, G. C. Synthesis 2017, 49, 917. |
[1] | (d) Edwin, M. K.; Charles, R. H. Tetrahedron Lett. 1967, 8, 3341. |
[2] | (a) Tanetani, Y.; Kaku, K.; Kawai, K.; Fujioka, T.; Shimizu, T. Pest. Biochem. Physiol. 2009, 95, 47. |
[2] | (b) Zhu, C. L.; Cai, Y. Y.; Jiang, H. F. Org. Chem. Front. 2021, 8, 5574. |
[2] | (c) Mikolasch, A.; Hahn, V. Microorganisms 2021, 9, 2199. |
[2] | (d) Huang, Y.; Li, J.; Chen, H.; He, Z.; Zeng, Q. Chem. Rec. 2021, 21, 1216. |
[3] | (a) Laskoski, M.; Clarke, S. J.; Neal, A.; Hervey, W. J.; Keller, M. T. J. Polym. Sci., Part A: Polym. Chem. 2016, 54, 1639. |
[3] | (b) Li, H. L.; Lian, C.; Yin, D. P.; Jia, Z. Y.; Yang, G. Y. Cryst. Growth Des. 2019, 19, 376. |
[3] | (c) Li, P.; Wang, L. J.; Wang, X. J. Heterocycl. Chem. 2021, 58, 28. |
[3] | (d) Trost, B. M.; Kalnmals, C. A. Chem.-Eur. J. 2019, 25, 11193. |
[4] | (a) Qiu, Y. H.; Hartwig, J. F. J. Am. Chem. Soc. 2020, 142, 19239. |
[4] | (b) Xu, Y.; Peng, Y.; Sun, J.; Chen, J.; Ding, J.; Wu, H. J. Chem. Res. 2010, 34, 358. |
[4] | (c) Placido, N.; Alessandra, L. Org. Lett. 2015, 17, 5100. |
[5] | Yamaguchi, J.; Yamaguchi, A.; Itami, K. Angew. Chem., Int. Ed. 2012, 51, 8960. |
[6] | (a) Zhang, F.; Zheng, D.; Wu, J. Org. Lett. 2018, 20, 1167. |
[6] | (b) Li, Y.; Fan, Y. Synth. Commun. 2019, 49, 3227. |
[7] | Cheng, Z.; Sun, P. C.; Tang, A. L.; Jin, W. W.; Liu, C. J. Org. Lett. 2019, 21, 8925. |
[8] | Liu, K. J.; Deng, J. H.; He, W. M. Green Chem. 2020, 22, 433. |
[9] | (a) Dong, J. J.; Krasnova, L.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed. 2014, 53, 9430. |
[9] | (b) Lekkala, R.; Lekkala, R.; Moku, B.; Rakesh, K. P. Qin, H. L. Org. Chem. Front. 2019, 6, 3490. |
[9] | (c) Fang, W.; Zha, G.; Qin, H. Org. Lett. 2019, 21, 8657. |
[9] | (d) Jiang, Y.; Alharbi, S. N; Sun, B.; Qin, H. RSC Adv. 2019, 9, 29784. |
[9] | (e) Foth, P. J.; Gu, F.; Bolduc, T. G.; Kanania, S. S.; Sammis, G. M. Chem. Sci. 2019, 10, 10331. |
[10] | (a) Chen, Q.; Xu, Z.; Lin, L.; Jiang, X.; Wang, R. J. Org. Chem. 2015, 80, 6890. |
[10] | (b) Epifanov, M.; Foth, P. J.; Gu, F.; Barrillon, C.; Kanani, S. S.; Higman, C. S.; Hein, J. E.; Sammis, G. M. J. Am. Chem. Soc. 2018, 140, 16464. |
[10] | (c) Zhang, G. F.; Zhao, Y. Y.; Ding, C. R. Org. Biomol. Chem. 2019, 17, 7684. |
[10] | (d) Gurjar, J.; Fokin, V. V. Chem.-Eur. J. 2020, 26, 10402. |
[10] | (e) Doktor, K.; Michaudel, Q. Org. Lett. 2021, 23, 5271. |
[11] | (a) Ai, C.; Zhu, F.; Wang, Y.; Yan, Z.; Lin, S. J. Org. Chem. 2019, 84, 11928. |
[11] | (b) Liao, X.; Zhou, Y.; Ai, C.; Ye, C.; Chen, G.; Yan, Z.; Lin, S. Tetrahedron Lett. 2021, 62, 153457. |
[12] | (a) Kim, Y. H.; Chung, B. C. J. Org. Chem. 1983, 48, 1562. |
[12] | (b) Oae, S.; Takata, T. Tetrahedron Lett. 1980, 21, 3689. |
[13] | (a) Ahmed, K.; Saikia, G.; Paul, S.; Baruah, S. D.; Islam, N. S. Tetrahedron 2019, 75, 130605. |
[13] | (b) Liang, G.; Liu, M.; Chen, J.; Ding, J.; Gao, W.; Wu, H. Chin. J. Chem. 2012, 30, 1611. |
[13] | (c) Gayakwad, E. M.; Patila, V. V.; Shankarling, G. S. New J. Chem. 2016, 40, 223. |
[13] | (d) Zhao, R.; Lu, W. Organometallics 2018, 37, 2188. |
[13] | (e) Bahrami, K.; Khodamorady, M. Appl. Organomet. Chem. 2018, 32, e4553. |
[13] | (f) Meng, Y. Y.; Wang, M.; Jiang, X. F. Angew. Chem., Int. Ed. 2020, 59, 1346. |
[13] | (g) Horvat, M.; Kodrič, G.; Jereb, M.; Iskra, J. RSC Adv. 2020, 10, 34534. |
[13] | (h) Zhang, M. Q.; Zhai, Y. Y.; Ru, S.; Zang, D. J.; Han, S.; Yu, H.; Wei, Y. G. Chem. Commun. 2018, 54, 10164. |
[13] | (i) Afrasiabi, R.; Jalilian, F.; Yadollahi, B.; Farsani, M. R. Inorg. Chem. Commun. 2014, 50, 113. |
[13] | (j) Gholamyan, S.; Khoshnavazi, R.; Rostami, A. Catal. Lett. 2017, 147, 71. |
[13] | (k) Chen, Z. X.; Liu, C. B.; Liu, J.; Li, J.; Koh, M. J.; Loh, K. P. Adv. Mater. 2020, 32, 1906437. |
[13] | (l) Liu, K. J.; Deng, J. H.; Yang, J.; Gong, S. F.; Lin, Y. W.; He, J. Y.; Cao, Z.; He, W. M. Green Chem. 2020, 22, 433. |
/
〈 |
|
〉 |