Chinese Journal of Organic Chemistry >
Design, Synthesis and Bioactivity of Novel Fluoropyrazole Hydrazides
Received date: 2021-12-16
Revised date: 2022-01-04
Online published: 2022-01-21
Supported by
National Natural Science Foundation of China(22077137); National Natural Science Foundation of China(21472236)
Laccase is a potential target and has important physiological functions in micro organisms. In order to find compounds with high laccase inhibitory activity, 15 cinnamaldehyde hydrazide derivatives containing difluoromethylpyrazole were designed and synthesized by using the principle of active substructure splicing with 4-chlorocinnamaldehyde thiosemicarbazone (PMDD-5Y) as the lead compound. The structures of the compounds were confirmed by 1H NMR, 13C NMR and HRMS. The results of laccase inhibitory activity test showed that all the prepared compounds have good activity, and N'- ((Z)-3-(3,4-dichlorophenyl)-3-phenylallylidene)-3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carbohydrazide (5l) and N'-((Z)- 3-(2-chlorophenyl)-3-(4-chlorophenyl)allylidene)-3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carbohydrazide (5m) had the half-maximal inhibiting concentration (IC50) values of 0.069 and 0.063 mmol/L, respectively, which were significantly better than that of lead compound PMDD-5Y (IC50=0.553 mmol/L) and positive control cysteine (IC50=0.298 mmol/L). The in vitro bioassay showed that the compounds with good laccase inhibitory activity showed certain fungicidal activity against V. mali, F. graminearum and M. grisea at a concentration of 50 μg/mL. In vivo trials against M. grisea demonstrated that compound 5l was effective with curative activity of 78.55% at a concentration of 200 μg/mL, which showed a certain control efficiency in vivo. Further molecular docking study revealed that compound 5l with high laccase inhibitory activity had a good protein binding mode with laccase protein.
Changkai Wang , Tengda Sun , Xuebo Zhang , Xinling Yang , Xingxing Lu , Huan Xu , Fasheng Shi , Li Zhang , Yun Ling . Design, Synthesis and Bioactivity of Novel Fluoropyrazole Hydrazides[J]. Chinese Journal of Organic Chemistry, 2022 , 42(5) : 1527 -1536 . DOI: 10.6023/cjoc202112021
[1] | Giardina, P.; Faraco, V.; Pezzella, C.; Piscitelli, A.; Vanhulle, S.; Sannia, G. Cell. Mol. Life Sci. 2010, 67, 369. |
[2] | Ducros, V.; Brzozowski, A. M.; Wilson, K. S.; Brown, S. H.; ?stergaard, P.; Schneider, P.; Yaver, D. S.; Pedersen, A. H.; Davies, G. J. Nat Struct Biol. 1998, 5, 310. |
[3] | Janusz, G.; Pawlik, A.; Swiderska-Burek, U.; Polak, J.; Sulej, J.; Jarosz-Wilkolazka, A.; Paszczyński, A. Int. J. Mol. Sci. 2020, 21, 966. |
[4] | Hakulinen, N.; Rouvinen, J. Cell. Mol. Life Sci. 2015, 72, 857. |
[5] | Bertrand, T.; Jolivalt, C.; Briozzo, P.; Caminade, E.; Joly, N.; Madzak, C.; Mougin, C. Biochemistry 2002, 41, 7325. |
[6] | Morozova, O. V.; Shumakovich, G. P.; Gorbacheva, M. A.; Shleev, S. V.; Yaropolov, A. I. Biochemistry 2007, 72, 1136. |
[7] | Kumar, G. N.; Srikumar, K. Appl. Biochem. Biotechnol. 2012, 167, 662. |
[8] | Juárez-Gómez, J.; Rosas-Tate, E. S.; Roa-Morales, G.; Balderas-Hernández, P.; Romero-Romo, M.; Ramírez-Silva, M. T. J. Chem. 2018, 2018, 1. |
[9] | Robles, A.; Lucas, R.; Martínez-Cañamero, M.; Omar, N. B.; Pérez, R.; Gálvez, A. Enzyme Microb. Technol. 2002, 31, 516. |
[10] | Murugesan, K.; Kim, Y. M.; Jeon, J. R.; Chang, Y. S. J. Hazard. Mater. 2009, 168, 523. |
[11] | Wang, T.; Milton, R. D.; Abdellaoui, S.; Hickey, D. P.; Minteer, S. D. Anal Chem. 2016, 88, 3243. |
[12] | Leech, D.; Feerick, K. O. Electroanalysis 2000, 12, 1339. |
[13] | Johannes, C.; Majcherczyk, A. J. Biotechnol. 2000, 78, 193. |
[14] | Sondhi, S.; Sharma, P.; Saini, S.; Puri, N.; Gupta, N. PLoS One 2014, 9, e96951. |
[15] | Durand, F.; Gounel, S.; Kjaergaard, C. H.; Solomon, E. I.; Mano, N. Appl. Microbiol. Biotechnol. 2012, 96, 1489. |
[16] | Si, Y.-X.; Ji, S.; Wang, W.; Fang, N.-Y.; Jin, Q.-X.; Park, Y.-D.; Qian, G.-Y.; Lee, J.; Han, H.-Y.; Yin, S.-J. Process Biochem. 2013, 48, 152. |
[17] | Hijazi, M.; Türkmen, E.; Tiller, J. C. ChemBioChem 2019, 21, 874. |
[18] | Xu, Y.; Wang, Z.; Ling, Y.; Dong, W.; Xing, J.; Liang, P.; Yang, X.-L. Chin. J. Org. Chem. 2012, 32, 1278. (in Chinese) |
[18] | (徐焱, 王振, 凌云, 董玮, 邢静, 梁沛, 杨新玲, 有机化学, 2012, 32, 1278.) |
[19] | Wang, Z.-W.; Peng, Q.; Gao, X.; Zhong, S.; Fang, Y.; Yang, X.-L.; Ling, Y.; Liu, X.-L. J. Agric. Food. Chem. 2020, 68, 5318. |
[20] | Mykhailiuk, P. K. Chem. Rev. 2020, 121, 1670. |
[21] | Long, Z.-Q.; Yang, L.-L.; Zhang, J.-R.; Liu, S.-T.; Xie, J.; Wang, P.-Y.; Zhu, J.-J.; Shao, W.-B.; Liu, L.-W.; Yang, S. J. Agric. Food. Chem. 2021, 69, 8380. |
[22] | He, J.; Jia, Z.-Z.; Tan, H.-C.; L, X.-H.; Qiu, D.-C.; Shi, J.-R.; Xu, H.; Li, Y. Angew. Chem., Int. Ed. 2019, 58, 18513. |
[23] | Tessier, P. E.; Penwell, A. J.; Souza, F. E. S.; Fallis, A. G. Org. Lett. 2003, 5, 2989. |
[24] | Shi, Y.-J.; Li, Y.; Fang, Y.; Ye, L.-Y.; Chen, J.; Dai, H. Chin. J. Org. Chem. 2016, 36, 1431. (in Chinese) |
[24] | (石玉军, 李阳, 方源, 叶林玉, 陈佳, 戴红, 有机化学, 2016, 36, 1431.) |
[25] | Huang, S.-L.; Voigtritter, K. R.; Unger, J. B.; Lipshutz, B. H. Synlett 2010, 2041. |
[26] | Xiao, L.; Zheng, Y.-L.; Xie, Q.; Shao, L.-M. Eur. J. Org. Chem. 2017, 2017, 5880. |
[27] | Zhang, X.-B.; Ma, H.-Y.; Sun, T.-D.; Lei, P.; Yang, X.-L.; Zhang, X.-M.; Ling, Y. Chin. J. Org. Chem. 2019, 39, 2965. (in Chinese) |
[27] | (张学博, 马航宇, 孙腾达, 雷鹏, 杨新玲, 张晓鸣, 凌云, 有机化学, 2019, 39, 2965.) |
[28] | Sheng, J. M.S. Thesis, Hunan Agricultural University, Changsha, 2006. (in Chinese) |
[28] | (盛姣, 硕士论文,湖南农业大学,长沙, 2006.) |
[29] | Ngo, M. T.; Han, J. W.; Yoon, S.; Bae, S.; Kim, S.-Y.; Kim, H.; Choi, G. J. J. Agric. Food. Chem. 2019, 67, 7706. |
[30] | Molecular Operating Environment (MOE), 2019.01, Chemical Computing Group ULC, 1010 Sherbrooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7, 2019. |
/
〈 |
|
〉 |