ARTICLES

Mono-(6-diethylenetriamine-6-deoxy)-β-cyclodextrin Supramolecular Fluorescent Switch Constructed Based on Au3+ and I

  • Jiajia Lu ,
  • Junli Yang ,
  • Jie Gu ,
  • Ju Yang ,
  • Zhenjie Gao ,
  • Lijiao Su ,
  • Xin Tao ,
  • Mingwei Yuan ,
  • Lijuan Yang
Expand
  • Key Laboratory of Intelligent Supramolecular Chemistry at the University of Yunnan Province, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650500
*Corresponding authors. E-mail: ;
*Corresponding authors. E-mail: ;

Received date: 2021-11-15

  Revised date: 2022-01-17

  Online published: 2022-01-27

Supported by

National Natural Science Foundation of China(21762051); Program for Innovative Research Team (in Science and Technology) in University of Yunnan Province and Yunnan Provincial Department of Education Science Research Fund

Abstract

Mono-(6-diethylenetriamine-6-deoxy)-β-cyclodextrin (3N-β-CD) with the good water solubility was synthesized by a green and efficient method, and its structure was characterized by 1H NMR and HRMS. 3N-β-CD was used as a fluorescent probe to detect 27 kinds of ions in aqueous solution. The results showed that the fluorescence of 3N-β-CD was quenched by Au3+ and I. The performance of 3N-β-CD for detecting Au3+ and I was further explored by fluorescence titration, Job curve, nuclear magnetic resonance, infrared spectroscopy, ion interference and time response. The results diplayed that the minimum detection limit of 3N-β-CD for Au3+ was 2.73×10–6 mol/L and the binding stoichiometry ratios of 3N-β-CD with Au3+ was 1∶1, while the minimum detection limit of 3N-β-CD for I was 1.44×10–6 mol/L and the binding stoichiometry ratios of 3N-β-CD with I was 2∶1. In addition, the fluorescence intensity of 3N-β-CD gradually recovered when I was added into the mixed solution of 3N-β-CD and Au3+. Interestingly, the fluorescence intensity of 3N-β-CD also gradually recovered when Au3+ was added into the mixed solution of 3N-β-CD and I. The results exhibited that Au3+ and I could be used as fluorescence “on-off-on” to control the fluorescence behavior of 3N-β-CD, and thus enabled Au3+ and I to detect each other. On this basis, the logic gate controlling 3N-β-CD fluorescence switch was designed. This work provides a new apporach for the research and application of 3N-β-CD as a fluorescence “on-off-on” sensor.

Cite this article

Jiajia Lu , Junli Yang , Jie Gu , Ju Yang , Zhenjie Gao , Lijiao Su , Xin Tao , Mingwei Yuan , Lijuan Yang . Mono-(6-diethylenetriamine-6-deoxy)-β-cyclodextrin Supramolecular Fluorescent Switch Constructed Based on Au3+ and I[J]. Chinese Journal of Organic Chemistry, 2022 , 42(5) : 1474 -1482 . DOI: 10.6023/cjoc202111024

References

[1]
Hutchings, G. J.; Brust, M.; Schmidbaur, H. Chem. Soc. Rev. 2008, 37, 1759.
[2]
Hee, K. N.; Miae, W.; Seung, K. J.; Youngbuhm, H.; Dokyoung, K. Dyes Pigm. 2019, 160, 647.
[3]
Min, K. K.; Yun, S. N.; Yeonhee, L.; Kang, B. L. J. Anal. Methods Chem. 2018, 8, 1.
[4]
Ding, Y.; Jiang, Z.; Saha, K.; Kim, C. S.; Kim, S. T.; Landis, R. F.; Rotello, V. M. Mol. Ther. 2014, 22, 1075.
[5]
Shahzadi, S.; Noshin, Z.; Saira, R.; Rehana, S.; Jawad, N.; Shahzad, N. Nanomaterials 2016, 6, 71.
[6]
Cao, J.-T.; Yang, J.-J.; Zhao, L.-Z.; Wang, Y.-L.; Wang, H.; Liu, Y.-M.; Ma, S.-H. Biosens. Bioelectron. 2018, 99, 92.
[7]
Ren, X.-F.; An, M.-Z. RSC Adv. 2018, 8, 2667.
[8]
Nabih, S.; Hassn, S. S. Life Sci. 2021, 272, 119262.
[9]
Zhang, X.; Xie, X.-L.; Xiong, L.-K.; Peng, Y. Chem. J. Chin. Univ. 2021, 42, 2824. (in Chinese)
[9]
(张想, 谢旭岚, 熊力堃, 彭扬, 高等学校化学学报, 2021, 42, 2824.)
[10]
Zeng, S.-W.; Yong, K.-T.; Roy, I.; Dinh, X.-Q.; Xia, Y.; Luan, F. Plasmonics 2011, 6, 491.
[11]
Zhang, W.; Deng, W. Chin. J. Org. Chem. 2018, 38, 3002. (in Chinese)
[11]
(张薇, 邓维, 有机化学, 2018, 38, 3002.)
[12]
Muhammad, R. Y.; He, G.; Gurram, B.; Lin, J.; Huang, P. Adv. NanoBiomed. Res. 2021, 1, 2100029.
[13]
Xue, J.; Cao, X.-W.; Liu, Y.-F.; Wang, M. Chem. J. Chin. Univ. 2021, 42, 2393. (in Chinese)
[13]
(薛谨, 曹小卫, 刘依帆, 王敏, 高等学校化学学报, 2021, 42, 2393.)
[14]
Court, K. A.; Yu, H.-J.; Chan, D.; Blanco, E.; Ziemys, A.; Holder, A. M. Adv. NanoBiomed. Res. 2021, 1, 2100036.
[15]
Ge, H.-Y.; Du, J.-J.; Long, S.-R.; Sun, W.; Fan, J.-L.; Peng, X.-J. Chem. J. Chin. Univ. 2021, 42, 1202. (in Chinese)
[15]
(葛浩英, 杜健军, 龙飒然, 孙文, 樊江莉, 彭孝军, 高等学校化学学报, 2021, 42, 1202.)
[16]
Andrea, C. D. V.; Yeh, C. K.; Huang, Y.-F. Adv. Healthcare Mater. 2020, 9, 2000864.
[17]
Fan, J.-N.; Cheng, Y.-Q.; Sun, M.-T. Chem. Rec. 2020, 20, 1474.
[18]
Xiao, S.; Wang, S.-J.; Wang, X.; Xu, P. Nano Select. 2021, 2, 1437.
[19]
Melissa, G. H.; Zhang, J.-Z. WIREs Nanomed. Nanobiotechnol. 2021, 13, e1694.
[20]
Lee, C. S.; Yu, S.-H.; Kim, T. H. Nanomaterials 2018, 8, 17.
[21]
Tan, X.-P.; He, S.-H.; Liu, X.; Zhao, G.-F.; Huang, T.; Yang, L. Microchim. Acta 2019, 186.
[22]
Tan, X.-P.; Liu, X.; Zeng, W.-J.; Zhao, G.-F.; Zhang, Z.; Huang, T.; Yang, L. Anal. Chim. Acta 2019, 1078, 60.
[23]
Goodman, C. M.; Mccusker, C. D.; Yilmaz, T.; Rotello, V. M. Bioconjugate Chem. 2004, 15, 897.
[24]
Liu, Y.; Lin, L.-Q.; Han, Y.-H.; Liu, Y.-J. Chin. J. Org. Chem. 2020, 40, 4216. (in Chinese)
[24]
(刘洋, 林立青, 韩莹徽, 刘颖杰, 有机化学, 2020, 40, 4216.)
[25]
Quan, J.-N.; He, X.-X.; Yan, X.-H.; Li, X.-Q.; Xu, X.-S. Chin. J. Org. Chem. 2020, 40, 1033. (in Chinese)
[25]
(全积宁, 何小雪, 严新焕, 李小青, 许响生, 有机化学, 2020, 40, 1033.)
[26]
Cui, S. Chin. J. Control Endem. Dis. 2021, 36, 23. (in Chinese)
[26]
(崔生, 中国地方病防治杂志, 2021, 36, 23.)
[27]
Feng, L.-P.; Sun, Z.-Z.; Liu, H.; Liu, M.; Jiang, Y.; Fan, C.; Cai, Y.-Y., Zhang, S.; Xu, J.-H.; Wang, H. Chem. Commun. 2017, 9466.
[28]
Tang, X.; Wang, Y.; Han, J.; Ni, L.; Zhang, H.-Q.; Li, C.; Li, J.; Qiu, Y. Dalton Trans. 2018, 47, 3378.
[29]
Hou, P.; Wang, J.; Fu, S.; Liu, L.; Chen, S. Anal. Bioanal. Chem. 2018, 411, 935.
[30]
Ren, S.-H.; Liu, S.-G.; Ling, Y.; Shi, Y.; Li, N.-B.; Luo, H.-Q. Anal. Bioanal. Chem. 2019, 411, 3301.
[31]
Yao, H.; Wang, J.; Song, S.-S.; Fan, Y.-Q.; Guan, X.-W.; Zhou, Q.; Wei, T.-B.; Lin, Q.; Zhang, Y.-M. New J. Chem. 2018, 42, 18059.
[32]
Tamil, S. G.; Chitra, V.; Tamil, S. R.; Enoch, I.; Mosae, S. P. ACS Omega 2018, 3, 7985.
[33]
Yang, Y.-H.; Bao, Q.-L.; Luo, J.-P.; Yang, J.-L.; Li, C.-H.; Wei, K.-K.; Chuan, Y.-M.; Yang, L.-J. Chin. J. Org. Chem. 2020, 40, 1680. (in Chinese)
[33]
(杨云汉, 保秋连, 罗建萍, 杨俊丽, 李灿花, 魏可可, 钏永明, 杨丽娟, 有机化学, 2020, 40, 1680.)
[34]
Maniyazagan, M.; Mohandoss, S.; Sivakumar, K.; Stalin, T. Spectrochim. Acta A 2014, 133, 73.
[35]
Hu, M.; Yang, Y.; Gu, X.-Y.; Hu, Y.; Huang, J.; Wang, C.-Y. RSC Adv. 2014, 4, 62446.
[36]
Sivakumar, K.; Parameswari, M.; Stalin, T. J. Carbohydr. Chem. 2016, 35, 118.
[37]
Chattii, M.; Sarkar, S.; Mahalingam, V. Microchim. Acta 2016, 183, 133.
[38]
Wan, L.; Fan, Y.-Q.; Guan, X.-W.; Qu, W.-J.; Lin, Q.; Yao, H.; Wei, T.-B.; Zhang, Y.-M. Tetrahedron 2018, 74, 4005.
[39]
Yang, K.; Chang, Y.-C.; Wen, J.; Lu, Y.-C.; Pei, Y.-X.; Cao, S.-P.; Wang, F.; Pei, Z.-C. Chem. Mater. 2016, 28, 1990.
[40]
Shahd, M.; Srivastava, P.; Razi, S. S.; Ali, R.; Misra, A. J. Inclusion Phenom. Macrocyclic Chem. 2013, 77, 241.
[41]
Chinta, J. P.; Dessingou, J.; Rao, C. P. J. Chem. Sci. 2013, 125, 1455.
[42]
Zhang, Y.-M.; Zhu, W.; Qu, W.-J.; Zhong, K.-P.; Chen, X.-P.; Yao, H.; Wei, T.-B.; Lin, Q. Chem. Commun. 2018, 54, 4549.
[43]
Li, W.-T. M.S. Thesis, Northwest Normal University, Lanzhou, 2017. (in Chinese)
[43]
(李文婷, 硕士论文, 西北师范大学, 兰州, 2017.)
[44]
Wang, X.-J.; Zhang, C.-H.; L.-H.; Zhang, L.-W. Sens. Actuators, B 2011, 156, 463.
[45]
Jiang, R.-J. M.S. Thesis, Kunming University of Science and Technology, Kunming, 2014. (in Chinese)
[45]
(蒋锐剑, 硕士论文, 昆明理工大学, 昆明, 2014.)
Outlines

/