REVIEWS

Methods and Application of Absolute Configuration Assignment for Chiral Compounds

  • Rui Ge ,
  • Yuanyuan Zhu ,
  • Haifeng Wang ,
  • Shuangxi Gu
Expand
  • a Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205
    b School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205
    c Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205
* Corresponding authors. E-mail: ;

Received date: 2021-08-24

  Revised date: 2021-09-18

  Online published: 2022-02-24

Supported by

National Natural Science Foundation of China(21877087); National Natural Science Foundation of China(22074114); National Natural Science Foundation of China(20602164); Natural Science Foundation of Hubei Province(2020CFB623); Key Laboratory for Green Chemical Process of Ministry of Education Open Fund(GCP20200201); Hubei Key Laboratory of Novel Reactor and Green Chemical Technology (Wuhan Institute of Technology) Open Fund(40201002)

Abstract

The absolute configuration (AC) assignment of chiral molecules is crucial to the research and application of chiral chemistry. In recent years, various methods for the AC determination for chiral compound fall mainly into three categories according to their principles. The first is the nuclear magnetic resonance (NMR)-based method for determining the AC of chiral compound by exciting the nucleus of the chiral compound in the chiral environment, including the NMR-based method using aromatic ring diamagnetic shielding effect and the NMR method using sugar shift effect. The second is X-ray diffraction (XRD) methods based on atomic resonance scattering, including single crystal and powder XRD. The third is based on the enantiomer refraction and absorption of polarized light, including optical rotation spectroscopy, electronic circular dichroism, vibration circular dichroism and vibration Raman spectroscopy. In addition, other methods such as enzyme-based and homobenzotetramisole (HBTM)-based methods are supplementary. Based on our research experiences in chiral fluorescent recognition and chiral drugs, the principles and application of these methods, aiming to afford beneficial references for chiral chemists and related workers are reviewed.

Cite this article

Rui Ge , Yuanyuan Zhu , Haifeng Wang , Shuangxi Gu . Methods and Application of Absolute Configuration Assignment for Chiral Compounds[J]. Chinese Journal of Organic Chemistry, 2022 , 42(2) : 424 -433 . DOI: 10.6023/cjoc202108047

References

[1]
Gu, S. X.; Wang, H. F.; Zhu, Y. Y.; Chen, F. E. Pharm. Fronts 2020, 2, 79.
[2]
Brooks, W. H.; Guida, W. C.; Daniel, K. G. Curr. Top. Med. Chem. 2011, 11, 760.
[3]
https://njardarson.lab.arizona.edu/sites/njardarson.lab.arizona.edu/files/Top%20200%20Pharmaceuticals%20By%20Retail%20Sales%202020V3.pdf
[4]
McConnell, O.; Bach, A.; Balibar, C.; Byrne, N.; Cai, Y.; Carter, G.; Chlenov, M.; Di, L.; Fan, K.; Goljer, I.; He, Y.; Herold, D.; Kagan, M.; Kerns, E.; Koehn, F.; Kraml, C.; Marathias, V.; Marquez, B.; McDonald, L.; Nogle, L.; Petucci, C.; Schlingmann, G.; Tawa, G.; Tischler, M.; Williamson, R. T.; Sutherland, A.; Watts, W.; Young, M.; Zhang, M. Y.; Zhang, Y.; Zhou, D.; Ho, D. Chirality 2007, 19, 658.
[5]
Jeschke, P. Pest. Manage. Sci. 2018, 74, 2389.
[6]
Herrero, M.; Simo, C.; Garcia-Canas, V.; Fanali, S.; Cifuentes, A. Electrophoresis 2010, 31, 2106.
[7]
(a) Batista, A. N. L.; dos Santos, F. M., Jr.; Batista, J. M., Jr.; Cass, Q. B. Molecules 2018, 23, 492.
[7]
(b) Kong, L. Y.; Wang, P. Chin. J. Nat. Med. 2013, 11, 193.
[8]
(a) Liu, J.; Yin, F.; Hu, J.; Ju, Y. Chin J. Org. Chem. 2021, 41, 1031. (in Chinese)
[8]
( 刘金果, 殷凤, 胡君, 巨勇, 有机化学, 2021, 41, 1031.)
[8]
(b) Khan, M. N.; Wirth, T. Chem. Eur. J. 2021, 27, 7059.
[9]
(a) Silva, M. S. Molecules 2017, 22, 247.
[9]
(b) Seco, J. M.; Quiñoá, E.; Riguera, R. Chem. Rev. 2004, 104, 17.
[10]
Wang, W.; Shen, X.; Zhang, C. Chin. J. Org. Chem. 2010, 30, 1126. (in Chinese)
[10]
( 王文革, 申秀民, 张聪, 有机化学, 2010, 30, 1126.)
[11]
Blazewska, K. M.; Gajda, T. Tetrahedron: Asymmetry 2009, 20, 1337-1361.
[12]
Dale, J. A.; Mosher, H. S. J. Am. Chem. Soc. 1973, 95, 512.
[13]
Kusumi, T.; Fukushima, T.; Ohtani, I.; Kakisawa, H. Tetrahedron Lett. 1991, 32, 2939.
[14]
(a) Kanki, D.; Imai, K.; Ise, Y.; Okada, S.; Matsunaga, S. J. Nat. Prod. 2021, 84, 1676.
[14]
(b) An, J. S.; Shin, B.; Kim, T. H.; Hwang, S.; Shin, Y. H.; Cui, J.; Du, Y. E.; Yi, J.; Nam, S. J.; Hong, S.; Shin, J.; Jang, J.; Yoon, Y. J.; Oh, D. C. Org. Lett. 2021, 23, 3359.
[14]
(c) Jiang, Z. P.; Sun, S. H.; Yu, Y.; Mandi, A.; Luo, J. Y.; Yang, M. H.; Kurtan, T.; Chen, W. H.; Shen, L.; Wu, J. Chem. Sci. 2021, 12, 10197.
[14]
(d) Chen, K.; Chen, C.; Liu, X.; Sun, W.; Deng, Y.; Liu, J.; Wang, J.; Luo, Z.; Zhu, H.; Zhang, Y. Phytochemistry 2021, 190, 112860.
[15]
Freire, F.; Seco, J. M.; Quiñoá, E.; Riguera, R. Chem. Commun. 2007, 1456.
[16]
Raban, M.; Mislow, K. Top. Stereochem. 1967, 2, 199.
[17]
Trost, B. M.; Belletire, J. L.; Godleski, S; McDougal, P. G.; Balkovec, J. M. J. Org. Chem. 1986, 51, 2370.
[18]
Oyama, K. I.; Kondo, T.; Shimizu, T.; Yoshida, K. Chirality 2020, 32, 556.
[19]
(a) Sui, B.; Yeh, E. A. H.; Curran, D. P. J. Org. Chem. 2010, 75, 2942.
[19]
(b) Simon, F.; Szabo, M.; Fabian, I. J. Hazard. Mater. 2019, 362, 286.
[19]
(c) Kriegelstein, M.; Profous, D.; Pribylka, A.; Cankar, P. J. Org. Chem. 2020, 85, 12912.
[19]
(d) Kolodziejska, R.; Wroblewski, M.; Studzinska, R.; Karczmarska-Wodzka, A.; Grela, I.; Augustynska, B.; Modzelewska- Banachiewicz, B. J. Mol. Catal. B: Enzym. 2015, 121, 28.
[20]
Kusumi, T.; Takahashi, H.; Xu, P. Tetrahedron Lett 1994, 35, 4397.
[21]
(a) Latypov, S. K.; Ferreiro, M. J.; Quinoa, E.; Riguera, R. J. Am. Chem. Soc. 1998, 120, 4741.
[21]
(b) Ciminiello, P.; Dell'Aversano, C.; Fattorusso, C.; Fattorusso, E.; Forino, M.; Magno, S. Tetrahedron 2001, 57, 8189.
[21]
(c) Abad, J. L.; Camps, F. Tetrahedron 2004, 60, 11519.
[21]
(d) Freire, F.; Seco, J. M.; Quiñoá, E.; Riguera, R. J. Org. Chem. 2005, 70, 3778.
[22]
Freire, F.; Seco, J. M.; Quiñoá, E.; Riguera, R. Org. Lett. 2010, 12, 208.
[23]
Fukushi, Y.; Yajima, C.; Mizutani, J. Tetrahedron Lett. 1994, 35, 599.
[24]
Sungsuwan, S.; Ruangsupapichart, N.; Prabpai, S.; Kongsaeree, P.; Thongpanchang, T. Tetrahedron Lett 2010, 51, 4965.
[25]
Soponpong, J.; Dolsophon, K.; Thongpanchang, C.; Linden, A.; Thongpanchang, T. Tetrahedron Lett. 2019, 60, 497.
[26]
Dolsophon, K.; Soponpong, J.; Kornsakulkarn, J.; Thongpanchang, C.; Prabpai, S.; Kongsaeree, P.; Thongpanchang, T. Org. Biomol. Chem. 2016, 14, 11002.
[27]
Harada, K.; Shimizu, Y.; Fujii, K. Tetrahedron Lett. 1998, 39, 6245.
[28]
Harada, K.; Shimizu, Y.; Kawakami, A.; Norimoto, M.; Fujii, K. Anal. Chem. 2000, 72, 4142.
[29]
Nagai, Y.; Kusumi, T. Tetrahedron Lett. 1995, 36, 1853.
[30]
Lin, T. Y.; Chien, S. C.; Kuo, Y. H.; Wang, S. Y. Nat. Prod. Commun. 2012, 7, 835.
[31]
Teng, R.; Shen, P.; Wang, D.; Yang, C. Chin. J. Magn. Reson. 2002, 19, 203. (in Chinese)
[31]
( 滕荣伟, 沈平, 王德祖, 杨崇仁, 波谱学杂志, 2002, 19, 203.)
[32]
(a) Kobayashi, M. Tetrahedron Lett. 2002, 58, 9365.
[32]
(b) Kobayashi, M. Tetrahedron 1998, 54, 10987.
[33]
Kaeothip, S.; Ishiwata, A.; Ito, T.; Fushinobu, S.; Fujita, K.; Ito, Y. Carbohydr. Res. 2013, 382, 95.
[34]
Parsons, S.; Flack, H. D.; Wagner, T. Acta Crystallogr. B 2013, 69, 249.
[35]
Albright, A. L.; White, J. M. Methods Mol. Biol. 2013, 1055, 149.
[36]
Das, B.; Srivastava, H. K. Cryst. Growth Des. 2017, 17, 3796.
[37]
Li, Z. M.; Tan, Y.; Ma, Y. P.; Cao, X. P.; Chow, H. F.; Kuck, D. J. Org. Chem. 2020, 85, 6478.
[38]
Gee, W. J. Dalton. Trans. 2017, 46, 15979.
[39]
Zhou, B.; Wu, Y.; Dalal, S.; Cassera, M. B.; Yue, J. M. J. Nat. Prod. 2016, 79, 1952.
[40]
(a) Liu, W.; She, J.; Yang, Y.; Zhu, S.; Xiong, X.; Tan, F.; Zhang, H.; Yang, X.; Zeng, G. Chin. J. Org. Chem. 2021, 41, 2898. (in Chinese)
[40]
( 刘文琪, 佘嘉祎, 杨英, 朱世明, 熊校勤, 谭芬, 张洪权, 杨新洲, 曾国平, 有机化学, 2021, 41, 2898.)
[40]
(b) Ye, Y.; Jiang, N.; Yang, X.; Xu, G. Chin. Chem. Lett. 2020, 31, 295.
[40]
(c) Tan, Y.; Guo, Z.; Zhu, M.; Shi, J.; Li, W.; Jiao, R.; Tan, R.; Ge, H. Chin. Chem. Lett. 2020, 31, 1406.
[40]
(d) Fang, X.; Ma, Q.; Feng, Y.; Liang, S. Chin. Chem. Lett. 2020, 31, 1251.
[41]
(a) Bock, D. A.; Lehmann, C. W. CrystEngComm 2012, 14, 1534.
[41]
(b) Harris, K. Top. Curr. Chem. 2012, 315, 133.
[42]
Pawar, N.; Saha, A.; Nandan, N.; Parambil, J. V. Crystals 2021, 11, 303.
[43]
Budziak, I.; Arczewska, M.; Kaminski, D. M. Molecules 2019, 24, 4245.
[44]
(a) Gee, W. J. Dalton. Trans. 2017, 46, 15979.
[44]
(b) de Poel, W.; Tinnemans, P. T.; Duchateau, A. L. L.; Honing, M.; Rutjes, F. P. J. T.; Vlieg, E.; de Gelder, R. Cryst. Growth Des. 2018, 18, 126.
[45]
Inokuma, Y.; Fujita, M. Bull. Chem. Soc. Jpn. 2014, 87, 1161.
[46]
Li, K.; Yang, D. S.; Gu, X. F.; Di, B. Fitoterapia 2019, 134, 135.
[47]
Polavarapu, P. L. Molecules 2016, 21, 1056.
[48]
Tang, C.; Ling, T. C.; Mo, K. H. Constr. Build. Mater. 2021, 268, 121079.
[49]
(a) Dong, B.; Cui, J.; Qi, Y.; Zhang, F. Adv. Mater. 2021, 33, 2004697.
[49]
(b) Zhang, B.; Jiang, Y.; Gao, M.; Ma, T.; Sun, W.; Pan, H. Nano Energy 2021, 80, 105504.
[50]
(a) Strong, M. E.; Richards, J. R.; Torres, M.; Beck, C. M.; La Belle, J. T. Biosens. Bioelectron. 2021, 177, 112949.
[50]
(b) Wang, Y.; Weng, J.; Wen, X.; Hu, Y.; Ye, D. Biomater. Sci. 2021, 9, 406.
[51]
Tranter, G. E.; Le Pevelen, D. D. Tetrahedron: Asymmetry 2017, 28, 1192.
[52]
(a) Mandi, A.; Kurtan, T. Nat. Prod. Rep. 2019, 36, 889.
[52]
(b) He, Y.; Wang, B.; Dukor, R. K.; Nafie, L. A. Appl. Spectrosc. 2011, 65, 699.
[53]
(a) Bertucci, C.; Pistolozzi, M.; De Simone, A. Anal. Bioanal. Chem. 2010, 398, 155.
[53]
(b) Mandi, A.; Mudianta, I. W.; Kurtan, T.; Garson, M. J. J. Nat. Prod. 2015, 78, 2051.
[54]
Berova, N.; Di Bari, L.; Pescitelli, G. Chem. Soc. Rev. 2007, 36, 914.
[55]
Superchi, S.; Scafato, P.; Gorecki, M.; Pescitelli, G. Curr. Med. Chem. 2018, 25, 287.
[56]
Pescitelli, G.; Kurtan, T.; Floerke, U.; Krohn, K. Chirality 2009, 21, 181.
[57]
Gu, S. X.; Li, Z. M.; Ma, X. D.; Yang, S. Q.; He, Q. Q.; Chen, F. E.; De Clercq, E.; Balzarini, J.; Pannecouque, C. Eur. J. Med. Chem. 2012, 53, 229.
[58]
Ren, J.; Mistry, T. L.; Su, P. C.; Mehboob, S.; Demissie, R.; Fung, L. W.; Ghosh, A. K.; Johnson, M. E. Bioorg. Med. Chem. Lett. 2018, 28, 2074.
[59]
Liu, J.; Du, D.; Si, Y.; Lü, H.; Wu, X.; Li, Y.; Liu, Y.; Yu, S. Chin. J. Org. Chem. 2010, 30, 1270. (in Chinese)
[59]
( 刘静, 杜丹, 司伊康, 吕海宁, 吴先富, 李勇, 刘元艳, 庾石山, 有机化学, 2010, 30, 1270.)
[60]
(a) Cao, Y.; Kuang, Q.; Ju, F.; Deng, Y.; Gu, Y.; Ren, B.; Guo, D. Chin. J. Org. Chem. 2020, 40, 4328. (in Chinese)
[60]
( 曹钰镁, 旷歧轩, 巨凤, 邓赟, 邓放, 顾玉诚, 任波, 郭大乐, 有机化学, 2020, 40, 4328.)
[60]
(b) Zhang, X.; Shao, S.; Feng, Z.; Jiang, J.; Yang, Y.; Zhang, P. Chin. J. Org. Chem. 2021, 41, 6. (in Chinese)
[60]
( 张旭, 邵思远, 冯子明, 姜建双, 杨桠楠, 张培成, 有机化学, 2021, 41, 6.)
[60]
(c) Li, H.; Xie, F.; Sun, Y.; Wang, M.; Chen, J.; Zhou, H.; Ding, Z. Chin. J. Org. Chem. 2021, 41, 4493. (in Chinese)
[60]
( 李洪涛, 谢飞, 孙岳, 王萌, 陈静圆, 周皓, 丁中涛, 有机化学, 2021, 41, 4493.)
[60]
(d) Cai, J.; Nong, X.; Wang, B.; Zeng, W.; Huang, G.; Zhang, Z.; Zheng, C. Chin. J. Org. Chem. 2021, 41, 2905. (in Chinese)
[60]
( 蔡瑾, 农旭华, 王斌, 曾尾女, 黄国雷, 张子怡, 郑彩娟, 有机化学, 2021, 41, 2905.)
[60]
(e) Han, G.; Ren, Y.; Fan, Y.; Ji, K.; Zhou, B.; Cao, W.; Yue, J. Chin. J. Org. Chem. 2020, 40, 2811. (in Chinese)
[60]
( 韩光辉, 任宇豪, 范耀月, 纪开龙, 周彬, 曹卫国, 岳建民, 有机化学, 2020, 40, 2811.)
[60]
(f) Guo, R.; Lv, T.; Han, F.; Hou, Z.; Yao, G.; Lin, B.; Wang, X.; Huang, X.; Song, S. Chin. Chem. Lett. 2020, 31, 1254.
[61]
(a) Polavarapu, P. L.; Santoro, E. Nat. Prod. Rep. 2020, 37, 1661.
[61]
(b) del Rio, R. E.; Joseph-Nathan, P. Nat. Prod. Commun. 2021, 16, 1.
[62]
Merten, C.; Golub, T. P.; Kreienborg, N. M. J. Org. Chem. 2019, 84, 8797.
[63]
Kuppens, T.; Bultinck, P.; Langenaeker, W. Drug Discovery Today: Technol. 2004, 1, 269.
[64]
Eleuterio, B.; Pedro, J. Nat. Prod. Commun. 2017, 12, 641.
[65]
Pardo-Novoa, J. C.; Arreaga-Gonzalez, H. M.; Gomez-Hurtado, M. A.; Rodriguez-Garcia, G.; Cerda-Garcia-Rojas, C. M.; Joseph- Nathan, P.; del Río, R. E. J. Nat. Prod. 2016, 79, 2570.
[66]
Rullich, C. C.; Kiefer, J. Analyst 2019, 144, 5368.
[67]
(a) Polavarapu, P. L.; Covington, C. L.; Raghavan, V. ChemPhys- Chem 2017, 18, 2459.
[67]
(b) Calisto, Í. H.; Furlan, M.; Blanch, E. W.; Batista, J. M. Vib. Spectrosc. 2017, 91, 136.
[67]
(c) Rullich, C. C.; Kiefer, J. Analyst 2018, 143, 3040.
[67]
(d) Ricci, M.; Lofrumento, C.; Becucci, M.; Castellucci, E. M. Spectrochim. Acta, Part A 2018, 188, 141.
[68]
Dudek, M.; Zajac, G.; Szafraniec, E.; Wiercigroch, E.; Tott, S.; Malek, K.; Kaczor, A.; Baranska, M. Spectrochim. Acta, Part A 2019, 206, 597.
[69]
Profant, V.; Jegorov, A.; Bour, P.; Baumruk, V. J. Phys. Chem. B 2017, 121, 1544.
[70]
Covington, C. L.; Raghavan, V.; Smuts, J. P.; Armstrong, D. W.; Polavarapu, P. L. Chirality 2017, 29, 670.
[71]
Wang, Y.; Wang, J.; Liu, D.; Zhang, W. Chin. J. Org. Chem. 2014, 34, 1766. (in Chinese)
[71]
( 王彦兆, 王建霞, 刘德龙, 张万斌, 有机化学, 2014, 34, 1766.)
[72]
(a) Liang, P.; Qin, B.; Mu, M.; Zhang, X.; Jia, X.; You, S. Biotechnol. Lett. 2013, 35, 1469.
[72]
(b) Jing, Q.; Kaziauskas, R. J. Chirality 2008, 20, 724.
[73]
Faigl, F.; Kovács, E.; Holczbauer, T.; Balogh, D.; Czugler, M. Cent. Eur. J. Chem. 2014, 12, 25.
[74]
Burns, A. S.; Wagner, A. J.; Fulton, J. L.; Young, K.; Zakarian, A.; Rychnoysky, S. D. Org. Lett. 2017, 19, 2953.
[75]
Wagner, A. J.; Rychnovsky, S. D. J. Org. Chem. 2013, 78, 4594.
[76]
(a) Meninno, S.; Franco, F.; Benaglia, M.; Lattanzi, A. Adv. Synth. Catal. 2021, 363, 3379.
[76]
(b) Yin, Q.; Shi, Y.; Wang, J.; Zhang, X. Chem. Soc. Rev. 2020, 49, 6141.
[76]
(c) Gu, Q. S.; Li, Z. L.; Liu, X. Y. Acc. Chem. Res. 2020, 53, 170.
[76]
(d) Burns, A. S.; Ross, C. C.; Rychnovsky, S. D. J. Org. Chem. 2018, 83, 2504.
[76]
(e) King, R. P.; Wagner, A. J.; Burtea, A.; King, S. M. J. Chem. Educ. 2020, 97, 793.
Outlines

/