ARTICLES

CuI-Catalyzed Regioselective Synthesis of 3-Arylcoumarins with Arylamines under Mild Conditions

  • Yamin Sun ,
  • Xiyong Li ,
  • Jinwei Yuan ,
  • Jialin Yu ,
  • Shuainan Liu
Expand
  • a Department of Pharmaceuticals and Medical Devices, Weihai Ocean Vocational College, Weihai, Shandong 264300
    b School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001
* Corresponding author. E-mail:

Received date: 2021-08-26

  Revised date: 2021-09-26

  Online published: 2022-02-24

Supported by

Natural Science Foundation of Henan Provincial Department of Education(21A150016); Training Program of Youth Backbone Teacher of Henan Province(2018GGJS178); Innovative Funds Plan of Henan University of Technology(2020ZKCJ29)

Abstract

A mild and convenient method has been developed for the construction of 3-arylcoumarins through CuI-catalyzed reaction of coumarins with arylamines under mild conditions. The present protocol simply utilizes readily available starting materials as substrates, inexpensive metal as catalyst, providing various 3-arylcoumarins with good functional groups toleration in moderate to good yields. Moreover, control experiments show that the reaction proceeds by a radical pathway.

Cite this article

Yamin Sun , Xiyong Li , Jinwei Yuan , Jialin Yu , Shuainan Liu . CuI-Catalyzed Regioselective Synthesis of 3-Arylcoumarins with Arylamines under Mild Conditions[J]. Chinese Journal of Organic Chemistry, 2022 , 42(2) : 631 -640 . DOI: 10.6023/cjoc202108050

References

[1]
(a) Kostova, I. Curr. Med. Chem.: Anti-Cancer Agents 2005, 5, 29.
[1]
(b) Hoult, J. R. S.; Paya, M. Gen. Pharmacol. 1996, 27, 713.
[1]
(c) Kabeya, L. M.; deMarchi, A. A.; Kanashiro, A.; Lopes, N. P.; da Silva, C. H. T. P.; Pupo, M. T.; Lucisano-Valim, Y. M. Bioorg. Med. Chem. 2007, 15, 1516.
[2]
(a) Dayam, R.; Gundla, R.; Al-Mawsawi, L. Q.; Neamati, N. Med. Res. Rev. 2008, 28, 118.
[2]
(b) Thuong, P. T.; Hung, T. M.; Ngoc, T. M.; Ha, D. T.; Min, B. S.; Kwack, S. J.; Kang, T. S.; Bae, K. Phytother. Res. 2010, 24, 101.
[2]
(c) Koefod, R. S.; Mann, K. R. Inorg. Chem. 1989, 28, 2285.
[3]
(a) de Souza Santos, M.; de Morais Del Lama, M. P. F.; Deliberto, L. A.; da Silva Emery, F.; Pupo, M. T.; Naal, R. M. Z. G. Arch. Pharmacal Res. 2013, 36, 731.
[3]
(b) Zhao, H.; Yan, B. L.; Peterson, B.; Luo, J.; Xu, T.; Du, W.; Xu, Q.; Tu, Z.; Brekken, R. A.; Ren, X.; Bullock, A. N.; Liang, G.; Lu, X.; Oracid, K. D. ACS Med. Chem. Lett. 2012, 3, 327.
[3]
(c) Wang, C.; Wu, C.; Zhu, J.; Miller, R. H.; Wang, Y. J. Med. Chem. 2011, 54, 2331.
[3]
(d) Reddie, K. G.; Humphries, W. H.; Bain, C. P.; Payne, C. K.; Kemp, M. L.; Murthy, N. Org. Lett. 2012, 14, 680.
[4]
Jafarpour, F.; Abbasnia, M. J. Org. Chem. 2016, 81, 11982.
[5]
(a) Wang, C.; Mi, X.; Li, Q.; Li, Y.; Huang, M.; Zhang, J.; Wu, Y.; Wu, Y. Tetrahedron 2015, 71, 6689.
[5]
(b) Banerjee, A.; Santra, S. K.; Khatun, N.; Ali, W.; Patel, B. K. Chem. Commun. 2015, 51, 15422.
[5]
(c) Niu, B.; Zhao, W.; Ding, Y.; Bian, Z.; Pittman, C. U.; Zhou, A.; Ge, H. J. Org. Chem. 2015, 80, 7251.
[5]
(d) Liu, L.; Pan, N.; Sheng, W.; Su, L.; Liu, L.; Dong, J.; Zhou, Y. B.; Yin, S. F. Adv. Synth. Catal. 2019, 361, 4126.
[5]
(e) Trinh, K. H.; Tran, P. H.; Nguyen, T. T.; Doan, S. H.; Le, M. V.; Nguyen, T. T.; Phan, N. T. S. Appl. Organomet. Chem. 2020, 34, e5515.
[6]
(a) Kim, K.; Kim, Y.; Hong, S. Chem. Commun. 2013, 49, 196.
[6]
(b) Min, M.; Hong, S. Chem. Commun. 2012, 48, 9613.
[7]
(a) He, C. Y.; Kong, J.; Li, X.; Li, X.; Yao, Q.; Yuan, F. M. J. Org. Chem. 2017, 82, 910.
[7]
(b) Huang, C. M.; Li, J.; Wang, S. L.; Ai, J. J.; Liu, X. Y.; Rao, W. D.; Wang, S. Y. J. Org. Chem. 2021, 86, 8437.
[7]
(c) Zhu, X. L.; Huang, Y.; Xu, X. H.; Qing, F. L. Org. Lett. 2020, 22, 5451.
[8]
(a) Mi, X.; Huang, M.; Zhang, J.; Wang, C.; Wu, Y. Org. Lett. 2013, 15, 6266;
[8]
(b) Kim, I.; Min, M.; Kang, D.; Kim, K.; Hong, S. Org. Lett. 2017, 19, 1394.
[8]
(c) Li, Q. R.; Zhao, X. L.; Li, Y. B.; Huang, M. M.; Kim. J. K.; Wu, Y. J. Org. Biomol. Chem., 2017, 15, 9775.
[8]
(d) Yuan, J. W.; Li, Y. Z.; Yang, L. R.; Mai, W. P.; Mao, P.; Xiao, Y. M.; Qu, L. B. Tetrahedron 2015, 71, 8178.
[9]
(a) Song, Z.; Ding, C.; Wang, S.; Dai, Q.; Sheng, Y.; Zheng, Z.; Liang, G. Chem. Commun. 2020, 56, 1847.
[9]
(b) Mostardeiro, V. B.; Dilelio, M. C.; Kaufman, T. S.; Silveira, C. C. RSC Adv. 2020, 10, 482.
[10]
(a) Natarajan, P.; Chuskit, D. Green Chem. 2021, 23, 4873.
[10]
(b) Chen, Z.; Bai, X.; Sun, J.; Xu, Y. J. Org. Chem. 2020, 85, 7674.
[10]
(c) Zhou, S. L.; Guo, L. N.; Duan, X. H. Eur. J. Org. Chem. 2014, 2014, 8094.
[11]
(a) Kang, D.; Ahn, K.; Hong, S. Asian J. Org. Chem. 2018, 7, 1136.
[11]
(b) Liu, S. N.; Yuan, J. W.; Qu, L. B. Chin. J. Org. Chem. 2018, 38, 316. (in Chinese)
[11]
( 刘帅男, 袁金伟, 屈凌波, 有机化学, 2018, 38, 316.)
[12]
(a) Gao, P.; Cheng, Y. B.; Yang, F.; Guo, L. N.; Duan, X. H. Tetrahedron Lett. 2019, 60, 150967.
[12]
(b) Chen, X.; Li, L.; Pei, C.; Li, J.; Zou, D.; Wu, Y.; Wu, Y. J. Org. Chem. 2021, 86, 2772.
[13]
(a) You, L.; An, R.; Wang, X.; Li, Y. Bioorg. Med. Chem. Lett. 2010, 20, 7426.
[13]
(b) El-Seedi, H. R. J. Nat. Prod. 2007, 17, 118.
[13]
(c) Narvaez-Mastache, J.; Novillo, M. F.; Delgado, G. Phytochemistry 2008, 69, 451.
[14]
(a) Matos, M. J.; Viña, D.; Picciau, C.; Orallo, F.; Santana, L.; Uriarte, E. Bioorg. Med. Chem. Lett. 2009, 19, 5053.
[14]
(b) Matos, M. J.; Viña, D.; Quezada, E.; Picciau, C. Delogu, G.; Orallo, F.; Santana, L.; Uriarte, E. Bioorg. Med. Chem. Lett. 2009, 19, 3268.
[14]
(c) Matos, M. J.; Terán, C.; Pérez-Castillo, Y.; Uriarte, E.; Santana, L.; Viña, D. J. Med. Chem. 2011, 54, 7127.
[15]
Kabeya, L. M.; Marchi, A. A.; Kanashiro, A.; Lopes, N. P.; da Silva, C. H. T. P.; Pupo, M. T.; Lucisano-Valim, Y. M. Bioorg. Med. Chem. 2007, 15, 1515.
[16]
(a) Olmedo, D.; Sancho, R.; Bedoya, L. M.; Lopez-Perez, J. L.; Olmo, E. D.; Munoz, E.; Alcami, J.; Gupta, M. P.; Feliciano, A. S. Molecules 2012, 17, 9245.
[16]
(b) Ong, E. B. B.; Watanabe, N.; Saito, A.; Futamura, Y.; Galil, K. H. A. E.; Koito, A.; Najimudin, N.; Osada, H. J. Biol. Chem. 2011, 286, 14049.
[17]
(a) Schiedel, M. S.; Briehn, C. A.; Bäuerle P. Angew. Chem., nt. Ed. 2001, 40, 4677.
[17]
(b) Edwards, P. D.; Mauger, R. C.; Cottrell, K. M.; Morris, F. X.; Pine, K. K.; Sylvester, M. A.; Scott, C. W.; Furlong, S. T. Bioorg. Med. Chem. Lett. 2000, 10, 2291.
[17]
(c) Lee, M. T.; Yen, C. K.; Yang, W. P.; Chen, H. H.; Liao, C. H.; Tsai, C. H.; Chen, C. H. Org. Lett. 2004, 6, 1241.
[17]
(d) Swanson, S. A.; Wallraff, G. M.; Chen, J. P.; Zhang, W. J.; Bozano, L. D.; Carter, K. R.; Salem, J. R.; Villa, R.; Scott, J. C. Chem. Mater. 2003, 15, 2305.
[17]
(e) Chang, C. H.; Cheng, H. C.; Lu, Y. J.; Tien, K. C.; Lin, H. W.; Lin, C. L.; Yang, C. J.; Wu, C. C. Org. Electron. 2010, 11, 247.
[18]
(a) Liu, J. M.; Zhang, X.; Shi, L. J.; Liu, M. W.; Yue, Y. Y.; Li, F. W.; Zhao, K. L. Chem. Commun. 2014, 50, 9887.
[18]
(b) Zeng, H. Y.; Li, C. J. Angew. Chem., nt. Ed., 2014, 53, 13862.
[18]
(c) Sashidhara, K. V.; Palnati, G. R.; Avula, S. R.; Kumar, A. Synlett 2012, 611.
[19]
(a) Unsinn, A.; Wunderlich, S. H.; Knochel, P. Adv. Synth. Catal. 2013, 355, 989.
[19]
(b) Messaoudi, S.; Brion, J. D.; Alami, M. Org. Lett. 2012, 14, 1496.
[19]
(c) Mosrin, M.; Monzon, G.; Bresser, T.; Knochel, P. Chem. Commun. 2009, 37, 5615.
[19]
(d) Matos, M. J.; Vazquez-Rodriguez, S.; Borges, F.; Santana, L.; Uriarte, E. Tetrahedron Lett. 2011, 52, 1225.
[20]
(a) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 16, 11212.
[20]
(b) Kuhl, N.; Hopkinson, M. N.; Wencel-Delord, J.; Glorius, F. Angew. Chem., nt. Ed. 2012, 51, 10236.
[20]
(c) Yeung, C. S.; Dong, V. M. Chem. Rev. 2011, 111, 1215.
[20]
(d) Wang, L. L.; Bao, P. L.; Liu, W. W.; Liu, S. T.; Hu, C. S.; Yue, H. L.; Yang, D. S.; Wei, W. Chin. J. Org. Chem. 2018, 38, 3189. (in Chinese)
[20]
( 王雷雷, 鲍鹏丽, 刘维伟, 刘思彤, 胡昌松, 岳会兰, 杨道山, 魏伟, 有机化学, 2018, 38, 3189.)
[20]
(e) Dong, D. Q.; Li, G. H.; Chen, D. M.; Sun, Y. Y.; Han, Q. Q.; Wang, Z. L.; Xu, X. M.; Yu, X. Y. Chin. J. Org. Chem. 2020, 40, 1766. (in Chinese)
[20]
( 董道青, 李光辉, 陈德茂, 孙媛媛, 韩晴晴, 王祖利, 徐鑫明, 于贤勇, 有机化学, 2020, 40, 1766.)
[20]
(f) Wu, Y.; Chen, J. Y.; Ning, J.; Jiang, X.; Deng, J.; Deng, Y.; Xu, R.; He, W. M. Green Chem. 2021, 23, 3950.
[20]
(g) Chen, J. Y.; Wu, H. Y.; Gui, Q. W.; Yan, S. S.; Deng, J.; Lin, Y. W.; Cao, Z.; He, W. M. Chin. J. Catal. 2021, 42, 1445.
[21]
Jafarpour, F.; Hazrati, H.; Mohasselyazdi, N.; Khoobi, M.; Shafiee, A. Chem. Commun. 2013, 49, 10935.
[22]
She, Z.; Shi, Y.; Huang, Y.; Cheng, Y.; Song, F.; You, J. Chem. Commun. 2014, 50, 13914.
[23]
Yuan, Y. W.; Yang, L. R.; Yin, Q. Y.; Mao, P.; Qu, L. B. RSC Adv. 2016, 6, 35936.
[24]
(a) Hofmann, J.; Jasch, H.; Heinrich, M. R. J. Org. Chem. 2014, 79, 2314.
[24]
(b) Li, M. Y.; Ye, Y. ChemCatChem 2015, 7, 4137.
[24]
(c) Chen, Z. X.; Wang, G. W. J. Org. Chem. 2005, 70, 2380.
[25]
Chauhan, P.; Ravi, M.; Singh, S.; Prajapati, P.; Yadav, P. P. RSC Adv. 2016, 6, 109.
[26]
Yuan, J. W.; Li, W. J.; Yang, L. R.; Mao, P.; Xiao, Y. M. Z. Naturforsch. 2016, 71, 1115.
[27]
Kojima, M.; Oisaki, K.; Kanai, M. Chem. Commun. 2015, 51, 9718.
[28]
Moazzam, A.; Jafarpour, F. New J. Chem. 2020, 44, 16692.
[29]
(a) Jafarpour, F.; Olia, M. B. A.; Hazrati, H. Adv. Synth. Catal. 2013, 355, 3407
[29]
(b) Martins, S.; Branco, P. S.; de la Torre, M. C.; Sierra, M. A.; Pereira, A. Synlett 2010, 2918.
[29]
(c) Jafarpour, F.; Darvishmolla, M.; Azaddoost, N.; Mohaghegh, F. New J. Chem. 2019, 43, 9328.
[29]
(d) Najib, A.; Tabuchi, S.; Hirano, K.; Miura, M. Heterocycles 2016, 92, 1187.
[29]
(e) Schroll, P.; Hari, D. P.; König, B. ChemistryOpen 2012, 1, 130.
[30]
(a) Ma, D.; Cai, Q. Acc. Chem. Res. 2008, 41, 1450.
[30]
(b) Hartwig, J. F. Acc. Chem. Res. 2008, 41, 1534.
[30]
(c) Surry, D.; Buchwald, S. Angew. Chem., nt. Ed. 2008, 47, 6338.
[31]
(a) He, L. M.; Qiu, G. Y. S.; Gao, Y. Q.; Wu, J. Org. Biomol. Chem. 2014, 12, 6965.
[31]
(b) Colleville, A. P.; Horan, R. A. J.; Olazabal, S.; Tomkinson, N. C. O. Org. Process Res. Dev. 2016, 20, 1283.
[31]
(c) Galli, C. Chem. Rev. 1988, 88, 765.
[32]
(a) Honraedt, A.; Callonnec, F. L.; Grognec, E. L.; Fernandez, V.; Felpin, F. X. J. Org. Chem. 2013, 78, 4604.
[32]
(b) Susperregui, N.; Miqueu, K.; Sotiropoulos, J. M.; Callonnec, F. L.; Fouquet, E.; Felpin, F. X. Chem.-Eur. J. 2012, 18, 7210.
[32]
(c) Callonnec, F. L.; Fouquet, E.; Felpin, F. X. Org. Lett. 2011, 13, 2646.
[33]
(a) Yuan, J. W.; Liu, S. N.; Qu, L. B. Tetrahedron 2017, 73, 2267.
[33]
(b) Yuan, J. W.; Liu, S. N.; Qu, L. B. Adv. Synth. Catal. 2017, 359, 4197.
[33]
(c) Yuan, J. W.; Qu, L. B. Chin. Chem. Lett. 2017, 28, 981.
[33]
(d) Yuan, J. W.; Yang, L. R.; Mao, P.; Qu, L. B. Org. Chem. Front. 2017, 4, 545.
[34]
(a) Bonin, H.; Sauthier, M.; Felpin, F. X. Adv. Synth. Catal. 2014, 356, 645.
[34]
(b) Gowrisankar, S.; Seayad, J. Chem.-Eur. J. 2014, 20, 12754.
[34]
(c) Doyle, M. P.; Siegfried, B.; Elliott, R. C.; Dellaria, J. F. J. Org. Chem. 1977, 42, 2431.
[34]
(d) Obushak, N. D.; Lesyuk, A.; Gorak, Y.; Matiichuk, V. Russ. J. Org. Chem. 2009, 45, 1375.
[35]
Cao, Y.; Zhao, H.; Zhang-Negrerie, D.; Du, Y. F.; Zhao, K. Adv. Synth. Catal. 2016, 358, 3610.
Outlines

/