ARTICLES

Development of an Efficient Method for the Synthesis of Compounds Containing P—O—P Bonds: Pyrophosphonates, Tetraalkyl Pyrophosphates and Pyrophosphonamidates

  • Zixuan Zhang ,
  • Runli Gao ,
  • Huijuan Hu ,
  • Xiaogang Lu ,
  • Jin,Chen,Xiao Wang ,
  • Hongmei Wang
Expand
  • State Key Laboratory of NBC Protection for Civilian, Beijing 102205

Received date: 2022-02-07

  Revised date: 2022-03-05

  Online published: 2022-03-30

Supported by

State Key Laboratory of Nuclear Biological and Chemical Protection for Civilian(SKLNBC2021-09)

Abstract

This work describes a method of synthesizing pyrophosphonates, tetraalkyl pyrophosphates and pyrophosphonamidates. Pyrophosphonates can be synthesized by the reaction of alkyl dichlorophosphonate, triethylamine (Et3N), and water, in a molar ratio of 1∶1.2∶0.5 (dichlorophosphonate∶Et3N∶water). When the reaction was allowed to proceed for 15 min in acetone, the maximum yield recorded for the pyrophosphonates was 95%. Et3N was the solvent, with an acid-binding agent. Following this method, the achieved rate of production of tetraalkyl pyrophosphate and pyrophosphonamidate was faster than the rate of production of the compounds reached using traditional methods.

Cite this article

Zixuan Zhang , Runli Gao , Huijuan Hu , Xiaogang Lu , Jin,Chen,Xiao Wang , Hongmei Wang . Development of an Efficient Method for the Synthesis of Compounds Containing P—O—P Bonds: Pyrophosphonates, Tetraalkyl Pyrophosphates and Pyrophosphonamidates[J]. Chinese Journal of Organic Chemistry, 2022 , 42(7) : 2214 -2221 . DOI: 10.6023/cjoc202201050

References

[1]
(a) Barpanda, P.; Nishimura, S.-I.; Yamada, A. Adv. Energy Mater. 2012, 2, 841.
[1]
(b) Ikotun, O. F.; Marino, N.; Kruger, P. E.; Julve, M.; Doyle, R. P. Coord. Chem. Rev. 2010, 254, 890.
[1]
(c) Jordan, F. Nat. Prod. Rep. 2003, 20, 184.
[1]
(d) Kim, S. K.; Lee, D. H.; Hong, J.-I.; Yoon, J. Acc. Chem. Res. 2009, 42, 23.
[1]
(e) Orriss, I. R.; Arnett, T. R.; Russell, R. G. G. Curr. Opin. Pharmacol. 2016, 28, 57.
[2]
(a) Lin, H. Org. Biomol. Chem. 2007, 5, 2541.
[2]
(b) Pehar, M.; Harlan, B. A.; Killoy, K. M.; Vargas, M. R. Antioxid. Redox Signaling 2018, 28, 1652.
[2]
(c) Davila, A.; Liu, L.; Chellappa, K.; Redpath, P.; Nakamaru-Ogiso, E.; Paolella, L. M.; Zhang, Z.; Migaud, M. E.; Rabinowitz, J. D.; Baur, J. A. Elife 2018, 7, 1.
[3]
(a) McPhillips, J. J.; Coon, J. M. Toxicol. Appl. Pharmacol. 1966, 8, 66.
[3]
(b) Rider, J. A.; Ellinwood, L. E.; Coon, J. M. Proc. Soc. Exp. Biol. Med. 1952, 81, 455.
[3]
(c) Rider, J. A.; Schulman, S.; Richter, R. B.; Moeller, H. C.; DuBois, K. P. J. Am. Med. Assoc. 1951, 145, 967.
[4]
(a) Kimmerle, G.; Klimmer, O. R. Arch. Toxicol. 1974, 33, 1.
[4]
(b) Wood, S. J.; Osborne, R. H. Pestic. Sci. 1991, 32, 485.
[5]
(a) Wolf, R. Ind. Eng. Chem. Prod. Res. Dev. 1981, 20, 413.
[5]
(b) Wolf, R. Kunststoffe 1986, 76, 943.
[6]
(a) D'Agostino, P. A.; Provost, L. R. J. Chromatogr. 1992, 589, 287.
[6]
(b) D'Agostino, P. A.; Hancock, J. R.; Chenier, C. L. Eur. J. Mass Spectrom. 2003, 9, 609.
[6]
(c) Terent'ev, A. G.; Morozik, Y. I.; Ivanova, M. V.; Dudkin, A. V. J. Anal. Chem. 2020, 75, 208
[7]
(a) Ahmadibeni, Y.; Parang, K. J. Org. Chem. 2006, 71, 5837.
[7]
(b) Dash, C.; Ahmadibeni, Y.; Hanley, M. J.; Pandhare, J.; Gotte, M.; Le Grice, S. F. J.; Parang, K. Bioorg. Med. Chem. Lett. 2011, 21, 3519.
[7]
(c) Gaines, J. C.; Ivy, E. E.; Dean, H. A.; Scales, A. L. J. Econ. Entomol. 1950, 43, 614.
[7]
(d) Kiran, Y. B.; Reddy, C. D.; Gunasekar, D.; Raju, C. N.; Barbosa, L. C. A.; Marney, D. C. O.; Russell, L. J. J. Fire Sci. 2007, 25, 193.
[7]
(e) Davidson, A.; Foley, D. A.; Frericks-Schmidt, H.; Ruggeri, S. G.; Herman, M.; LaCasse, S.; Liu, Y.; McInturff, E. L.; Morris, R.; Mugheirbi, N.; Samas, B.; Sarkar, A.; Singer, R. A.; Witkos, F.; Yu, S. Org. Process Res. Dev. 2021, 25, 621.
[8]
(a) Parakin, O. V.; Romakhin, A. S.; Nikitin, E. V.; Ignat'ev, Y. A.; Romanov, G. V.; Mironov, B. S.; Kargin, Y. M.; Pudovik, A. N. Zh. Obshch. Khim. 1985, 55, 2621.
[8]
(b) Pavlichenko, V. F.; Presnov, A. E.; Tomilov, A. P. Zh. Obshch. Khim. 1995, 65, 1347.
[9]
(a) Kumar, R.; Pardasani, D.; Mazumder, A.; Dubey, D. K.; Gupta, A. K. Aust. J. Chem. 2008, 61, 476.
[9]
(b) Kumar, R.; Gupta, A. K.; Kaushik, M. P. Phosphorus, Sulfur Silicon Relat. Elem. 2010, 185, 765.
[10]
(a) Toy, A. D. F. J. Am. Chem. Soc. 1948, 70, 3882.
[10]
(b) Toy, A. D. F. J. Am. Chem. Soc. 1950, 72, 2065.
[11]
Zhou, Y.; Yin, S.; Gao, Y.; Zhao, Y.; Goto, M.; Han, L.-B. Angew. Chem., Int. Ed. 2010, 49, 6852.
[12]
Huang, J.; He, W.; Wang, B. Phosphorus, Sulfur Silicon Relat. Elem. 2012, 187, 1125.
[13]
Kins, C. F.; Brunklaus, G.; Spiess, H. W. Macromolecules 2013, 46, 2067.
[14]
Dunning, T. H. J. Chem. Phys. 1989, 90, 1007.
Outlines

/