ARTICLES

Rhodium-Catalyzed Decarbonylative Suzuki-Miyaura Cross-Coupling via in-Situ Generation of Acyl Fluorides from Carboxylic Acids

  • Xiaojie Liu ,
  • Biping Xu ,
  • Weiping Su
Expand
  • aCollege of Chemistry, Fuzhou University, Fuzhou, Fujian 350108
    bState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002

Received date: 2022-03-03

  Revised date: 2022-04-02

  Online published: 2022-04-11

Supported by

National Key Research and Development Program of China(2018FYA0704502); National Natural Science Foundation of China(21931011); National Natural Science Foundation of China(22071241); Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China(2021ZZ105)

Abstract

The biaryl frameworks are momentous organic backbones that are commonly occurred in pharmaceutical, functional materials and natural products. By virtue of the distinctive reactivity through state-of-the-art process, decarbonylative couplings, which have bypassed the restriction to specifically substituted (hetero)aryl carboxylic acids of decarboxylative couplings, gradually become unneglected methods in the conversion of carboxylic acid derivatives. Herein, a rhodium-catalyzed decarbonylative Suzuki-Miyaura cross-coupling via in-situ generation strategy of acyl fluorides from carboxylic acids was developed. This protocol shows eminent functional group tolerance with arrays of combinations between carboxylic acid and boronic acid. Furthermore, the reaction offers a new access to those conventionally unattainable biaryl motifs, including natural product and modified drugs.

Cite this article

Xiaojie Liu , Biping Xu , Weiping Su . Rhodium-Catalyzed Decarbonylative Suzuki-Miyaura Cross-Coupling via in-Situ Generation of Acyl Fluorides from Carboxylic Acids[J]. Chinese Journal of Organic Chemistry, 2022 , 42(7) : 2184 -2191 . DOI: 10.6023/cjoc202203011

References

[1]
Rodriguez, N.; Goossen, L. J. Chem. Soc. Rev. 2011, 40, 5030.
[2]
(a) Goossen, L. J.; Rodriguez, N.; Goossen, K. Angew. Chem., Int. Ed. 2008, 47, 3100.
[2]
(b) Dzik, W. I.; Lange, P. P.; Gooßen, L. J. Chem. Sci. 2012, 3, 2671.
[2]
(c) Larrosa, I.; Cornella, J. Synthesis 2012, 44, 653.
[2]
(d) Fu, Z.; Li, Z.; Xiong, Q.; Cai, H. Chin. J. Org. Chem. 2015, 35, 984. (in Chinese)
[2]
( 付拯江, 李兆杰, 熊起恒, 蔡琥, 有机化学, 2015, 35, 984.)
[2]
(e) Wei, Y.; Hu, P.; Zhang, M.; Su, W. Chem. Rev. 2017, 117, 8864;
[3]
(a) Yang, J.; Deng, M.; Yu, T. Chin. J. Org. Chem. 2013, 33, 693. (in Chinese)
[3]
( 杨军, 邓敏智, 于涛, 有机化学, 2013, 33, 693.)
[3]
(b) Dermenci, A.; Dong, G. Sci. China Chem. 2013, 56, 685.
[3]
(c) Guo, L.; Rueping, M. Chemistry 2018, 24, 7794.
[3]
(d) Zhao, Q.; Szostak, M. ChemSusChem 2019, 12, 2983.
[3]
(e) Wang, Z.; Wang, X.; Nishihara, Y. Chem.-Asian J. 2020, 15, 1234.
[3]
(f) Lu, H.; Yu, T. Y.; Xu, P. F.; Wei, H. Chem. Rev. 2021, 121, 365.
[4]
(a) Tsuji, J.; Ohno, K. J. Am. Chem. Soc. 1966, 88, 3452.
[4]
(b) Tsuji, J.; Ohno, K. Tetrahedron Lett. 1966, 7, 4713.
[5]
Blum, J.; Lipshes, Z. J. Org. Chem. 1969, 34, 3076.
[6]
Chiusoli, G. P.; Costa, M.; Pecchini, G.; Cometti, G. Transition Met. Chem. 1977, 2, 270.
[7]
Gooßen, L. J.; Paetzold, J.; Winkel, L. Synlett 2002, 1721.
[8]
Wang, Z.; Wang, X.; Ura, Y.; Nishihara, Y. Org. Lett. 2019, 21, 6779.
[9]
Keaveney, S. T.; Schoenebeck, F. Angew. Chem., Int. Ed. 2018, 57, 4073.
[10]
(a) Malapit, C. A.; Bour, J. R.; Brigham, C. E.; Sanford, M. S. Nature 2018, 563, 100.
[10]
(b) Malapit, C. A.; Bour, J. R.; Laursen, S. R.; Sanford, M. S. J. Am. Chem. Soc. 2019, 141, 17322.
[11]
Wang, Z.; Wang, X.; Nishihara, Y. Chem. Commun. 2018, 54, 13969.
[12]
(a) He, B.; Liu, X.; Li, H.; Zhang, X.; Ren, Y.; Su, W. Org. Lett. 2021, 23, 4191.
[12]
(b) Deng, X.; Guo, J.; Zhang, X.; Wang, X.; Su, W. Angew. Chem., Int. Ed. 2021, 60, 24510.
[13]
(a) Blanchard, N.; Bizet, V. Angew. Chem., Int. Ed. 2019, 58, 6814.
[13]
(b) Ogiwara, Y.; Sakai, N. Angew. Chem., Int. Ed. 2020, 59, 574.
[13]
(c) Karbakhshzadeh, A.; Heravi, M. R. P.; Rahmani, Z.; Ebadi, A. G.; Vessally, E. J. Fluorine Chem. 2021, 248, 109806.
[14]
Fu, L.; Cao, X.; Wan, J.; Liu, Y. Chin. J. Chem. 2020, 38, 254.
[15]
(a) Zarate, C.; Manzano, R.; Martin, R. J. Am. Chem. Soc. 2015, 137, 6754.
[15]
(b) Chatupheeraphat, A.; Liao, H. H.; Srimontree, W.; Guo, L.; Minenkov, Y.; Poater, A.; Cavallo, L.; Rueping, M. J. Am. Chem. Soc. 2018, 140, 3724.
[15]
(c) Malapit, C. A.; Borrell, M.; Milbauer, M. W.; Brigham, C. E.; Sanford, M. S. J. Am. Chem. Soc. 2020, 142, 5918.
[16]
Hu, W.; Zhang, Y.; Zhu, H.; Ye, D.; Wang, D. Green. Chem. 2020, 38, 254.
[17]
Zhou, T.; Xie, P. P.; Ji, C. L.; Hong, X.; Szostak, M. Org. Lett. 2020, 22, 6434.
[18]
Aschenaki, A.; Ren, F.; Liu, J.; Zheng, W.; Song, Q.; Jia, W.; Bao, J. J.; Li, Y. RSC Adv. 2021, 11, 33692.
[19]
Zim, D.; Gruber, A. S.; Ebeling, G.; Dupont, J.; Monteiro, A. L. Org. Lett. 2000, 2, 2881.
[20]
Sicard, L.; Quinton, C.; Peltier, J. D.; Tondelier, D.; Geffroy, B.; Biapo, U.; Metivier, R.; Jeannin, O.; Rault-Berthelot, J.; Poriel, C. Chemistry 2017, 23, 7719.
[21]
Bistri, O.; Correa, A.; Bolm, C. Angew. Chem., Int. Ed. 2008, 47, 586.
[22]
Wójcik, K.; Goux-Henry, C.; Andrioletti, B.; Michał Pietrusiewicz, K.; Framery, E. Tetrahedron Lett. 2012, 53, 5602.
[23]
Shen, N.; Li, R.; Liu, C.; Shen, X.; Guan, W.; Shang, R. ACS Catal. 2022, 12, 2788.
[24]
Hanley, P. S.; Ober, M. S.; Krasovskiy, A. L.; Whiteker, G. T.; Kruper, W. J. ACS Catal. 2015, 5, 5041.
[25]
Nandurkar, N. S.; Bhanushali, M. J.; Bhor, M. D.; Bhanage, B. M. Tetrahedron Lett. 2008, 49, 1045.
[26]
Zou, Y.; Yue, G.; Xu, J.; Zhou, J. S. Eur. J. Org. Chem. 2014, 2014, 5901.
[27]
Lebrasseur, N.; Larrosa, I. J. Am. Chem. Soc. 2008, 130, 2926.
[28]
Santra, S.; Hota, P. K.; Bhattacharyya, R.; Bera, P.; Ghosh, P.; Mandal, S. K. ACS Catal. 2013, 3, 2776.
[29]
Liu, C.; Ni, Q.; Bao, F.; Qiu, J. Green Chem. 2011, 13, 1260.
[30]
Zhou, Y.; You, W.; Smith, K. B.; Brown, M. K. Angew. Chem., Int. Ed. 2014, 53, 3475.
[31]
Moon, Y.; Kwon, D.; Hong, S. Angew. Chem., Int. Ed. 2012, 51, 11333.
Outlines

/