Chinese Journal of Organic Chemistry >
N-Heterocyclic Carbene (NHC)-Catalyzed Desymmetrization of Biaryldialdehydes to Construct Axially Chiral Aldehydes
Received date: 2022-03-23
Revised date: 2022-04-30
Online published: 2022-05-07
Supported by
National Natural Science Foundation of China(21822103); National Natural Science Foundation of China(21820102003); National Natural Science Foundation of China(91956201); Program of Introducing Talents of Discipline to Universities of China(111 Program); Program of Introducing Talents of Discipline to Universities of China(B17019); Natural Science Foundation of Hubei Province(2017AHB047)
In the field of asymmetric catalytic synthesis, axially chiral aldehydes are often used as precursors of organic catalysts or chiral ligands because of their unique structures. The development of synthetic methods with enantioselectivity and structural diversity has always been the interest of chemists. However, only few catalytic methods have been developed for the construction of structurally diverse axially chiral aldehydes. Herein, a N-heterocyclic carbene (NHC)-catalyzed oxidative esterification reaction to synthesize axially chiral aldehydes through desymmetrization strategy was developed. This method features mild conditions (room temperature), excellent yields and enantioselectivity, broad substrate scope and good function group tolerance (26 examples, 54%~97% yields, up to 99% ee). All the axially chiral aldehyde products have been fully characterized and the absolute configuration was established by comparing the results from known literature. This strategy provides new possibilities for the synthesis of axially chiral aldehydes and their derivatives.
Key words: axially chiral; N-heterocyclic carbene; desymmetrization
Wei Zhao , Jing Liu , Xiangkui He , Hao Jiang , Liangqiu Lu , Wenjing Xiao . N-Heterocyclic Carbene (NHC)-Catalyzed Desymmetrization of Biaryldialdehydes to Construct Axially Chiral Aldehydes[J]. Chinese Journal of Organic Chemistry, 2022 , 42(8) : 2504 -2514 . DOI: 10.6023/cjoc202203048
| [1] | (a) Kozlowski, M. C.; Morgan, B. J.; Linton, E. C. Chem. Soc. Rev. 2009, 38, 3193. |
| [1] | (b) LaPlante, S. R.; Edwards, P. J.; Fader, L. D.; Jakalian, A.; Hucke, O. ChemMedChem 2011, 6, 505. |
| [1] | (c) Kumarasamy, E.; Raghunathan, R.; Sibi, M. K.; Sivaguru, J. Chem. Rev. 2015, 115, 11239. |
| [1] | (d) Wang, Y.-B.; Tan, B. Acc. Chem. Res. 2018, 51, 534. |
| [1] | (e) Cheng, J. K.; Xiang, S.-H.; Li, S.; Ye, L.; Tan, B. Chem. Rev. 2021, 121, 4805. |
| [1] | (f) Carmona, J. A.; Rodríguez-Franco, C.; Fernández, R.; Hornillos, V.; Lassaletta, J. M. Chem. Soc. Rev. 2021, 50, 2968. |
| [2] | (a) Li, S.; Chen, X.-Y.; Enders, D. Chem 2018, 4, 2026. |
| [2] | (b) Gong, L.-Z. Sci. China: Chem. 2019, 62, 3. |
| [2] | (c) Wang, Q.; Gu, Q.; You, S.-L. Angew. Chem., Int. Ed. 2019, 58, 6818. |
| [2] | (d) Smyth, J. E.; Butler, N. M.; Keller, P. A. Nat. Prod. Rep. 2015, 32, 1562. |
| [3] | Meyers, A. I.; Willemsen, J. J. Tetrahedron Lett. 1996, 37, 791. |
| [4] | (a) Bulman Page, P. C.; Buckley, B. R.; Farah, M. M.; Blacker, A. J. Eur. J. Org. Chem. 2009, 2009, 3413. |
| [4] | (b) Liu, Y.; Du, H. J. Am. Chem. Soc. 2013, 135, 6810. |
| [4] | (c) Mutoh, K.; Miyashita, N.; Arai, K.; Abe, J. J. Am. Chem. Soc. 2019, 141, 5650. |
| [5] | (a) Wen, W.; Chen, L.; Luo, M.-J.; Zhang, Y.; Chen, Y.-C.; Ouyang, Q.; Guo, Q.-X. J. Am. Chem. Soc. 2018, 140, 9774. |
| [5] | (b) Chen, L.; Luo, M.-J.; Zhu, F.; Wen, W.; Guo, Q.-X. J. Am. Chem. Soc. 2019, 141, 5159. |
| [5] | (c) Chen, J.; Gong, X.; Li, J.; Li, Y.; Ma, J.; Hou, C.; Zhao, G.; Yuan, W.; Zhao, B. Science 2018, 360, 1438. |
| [5] | (d) Cheng, A.; Zhang, L.; Zhou, Q.; Liu, T.; Cao, J.; Zhao, G.; Zhang, K.; Song, G.; Zhao, B. Angew. Chem., Int. Ed. 2021, 60, 20166. |
| [6] | (a) Zeng, X.-P.; Cao, Z.-Y.; Wang, Y.-H.; Zhou, F.; Zhou, J. Chem. Rev. 2016, 116, 7330. |
| [6] | (b) Yang, W.; Liu, Y.; Zhang, S.; Cai, Q. Angew. Chem., Int. Ed. 2015, 54, 8805. |
| [6] | (c) Zhuo, S.; Zhu, T.; Zhou, L.; Mou, C.; Chai, H.; Lu, Y.; Pan, L.; Jin, Z.; Chi, Y. R. Angew. Chem., Int. Ed. 2019, 58, 1784. |
| [6] | (d) Yang, G.; Guo, D.; Meng, D.; Wang, J. Nat. Commun. 2019, 10, 3062. |
| [7] | Staniland, S.; Yuan, B.; Gimnez-Agull, N.; Marcelli, T.; Willies, S. C.; Grainger, D. M.; Turner, N. J.; Clayden, J. Chem.-Eur. J. 2014, 20, 13084. |
| [8] | (a) Zheng, C.; You, S. L. RSC Adv. 2014, 4, 6173. |
| [8] | (b) He, J.; Wasa, M.; Chan, K. S. L.; Shao, Q.; Yu, J.-Q. Chem. Rev. 2017, 117, 8754 |
| [9] | (a) Liao, G.; Yao, Q.-J.; Zhang, Z.-Z.; Wu, Y.-J.; Huang, D.-Y.; Shi, B.-F. Angew. Chem., Int. Ed. 2018, 57, 3661. |
| [9] | (b) Liao, G.; Li, B.; Chen, H.-M.; Yao, Q.-J.; Xia, Y.-N.; Luo, J.; Shi, B.-F. Angew. Chem., Int. Ed. 2018, 57, 17151. |
| [9] | (c) Fan, J.; Yao, Q.-J.; Liu, Y.-H.; Liao, G.; Zhang, S.; Shi, B.-F. Org. Lett. 2019, 21, 3352. |
| [9] | (d) Liao, G.; Chen, H.-M.; Xia, Y.-N.; Li, B.; Yao, Q.-J.; Shi, B.-F. Angew. Chem., Int. Ed. 2019, 58, 11464. |
| [9] | (e) Yao, Q.-J.; Zhang, S.; Zhan, B.-B.; Shi, B.-F. Angew. Chem., Int. Ed. 2017, 56, 6617. |
| [9] | (f) Dhawa, U.; Tian, C.; Wdowik, T.; Oliveira, J. C. A.; Hao, J.; Ackermann, L. Angew. Chem., Int. Ed. 2020, 59, 13451. |
| [10] | (a) Ishii, T.; Nagao, K.; Ohmiya, H. Chem. Sci. 2020, 11, 5630. |
| [10] | (b) Liu, J.; Xing, X. N.; Huang, J. H.; Lu, L.Q.; Xiao, W. J. Chem. Sci. 2020, 11, 10605. |
| [10] | (c) Chen, K.-Q.; Sheng, H.; Liu, Q.; Shao, P.-L.; Chen, X.-Y. Sci. China: Chem. 2021, 64, 7. |
| [11] | (a) DiRocco, D. A.; Rovis, T. J. Am. Chem. Soc. 2012, 134, 8094. |
| [11] | (b) Dai, L.; Xia, Z.-H.; Gao, Y.-Y.; Gao, Z.-H.; Ye, S. Angew. Chem., Int. Ed. 2019, 58, 18124. |
| [11] | (c) Yoshioka, E.; Inoue, M.; Nagoshi, Y.; Kobayashi, A.; Mizobuchi, R.; Kawashima, A.; Kohtani, S.; Miyabe, H. J. Org. Chem. 2018, 83, 8962. |
| [11] | (d) Xia, Z.-H.; Dai, L.; Gao, Z.-H.; Ye, S. Chem. Commun. 2020, 56, 1525. |
| [11] | (e) Davies, A. V.; Fitzpatrick, K. P.; Betori, R. C.; Scheidt, K. A. Angew. Chem., Int. Ed. 2020, 59, 9143. |
| [11] | (f) Li, Q.-Z.; Zeng, R.; Fan, Y.; Liu, Y.-Q.; Qi, T.; Zhang, X.; Li, J.-L. Angew. Chem., Int. Ed. 2022, 61, e202116629. |
| [12] | (a) Ding, W.; Lu, L.-Q.; Zhou, Q.-Q.; Wei, Y.; Chen, J.-R.; Xiao, W.-J. J. Am. Chem. Soc. 2017, 139, 63. |
| [12] | (b) Lu, F.-D.; Liu, D.; Zhu, L.; Lu, L.-Q.; Yang, Q.; Zhou, Q.-Q.; Wei, Y.; Lan, Y.; Xiao, W.-J. J. Am. Chem. Soc. 2019, 141, 6167. |
| [12] | (c) Zhang, K.; Lu, L.-Q.; Jia, Y.; Wang, Y.; Lu, F.-D.; Pan, F.-F.; Xiao, W.-J. Angew. Chem., Int. Ed. 2019, 58, 13375. |
| [12] | (d) Lu, F.-D.; Lu, L.-Q.; He, G.-F.; Bai, J.-C.; Xiao, W.-J. J. Am. Chem. Soc. 2021, 143, 4168. |
| [12] | (e) Chen, J.; Liang, Y.-J.; Wang, P.-Z.; Li, G.-Q.; Zhang, B.; Qian, H.; Huan, X.-D.; Guan, W.; Xiao, W.-J.; Chen, J.-R. J. Am. Chem. Soc. 2021, 143,13382. |
| [12] | (f) Wang, P.-Z.; Wu, X.; Cheng, Y.; Jiang, M.; Xiao, W.-J.; Chen, J.-R. Angew. Chem., Int. Ed. 2021, 60, 22956. |
| [12] | (g) Lu, F.-D.; Chen, J.; Jiang, X.; Chen, J.-R.; Lu, L.-Q.; Xiao, W.-J. Chem. Soc. Rev. 2021, 50, 12808. |
| [13] | (a) Flanigan, D. M.; Romanov-Michailidis, F.; White, N. A.; Rovis, T. Chem. Rev. 2015, 115, 9307. |
| [13] | (b) Chen, X.-Y.; Gao, Z.-H.; Ye, S. Acc. Chem. Res. 2020, 53, 690. |
| [14] | (a) Stephenson, C. R. J.; Yoon, T. P.; MacMillan, D. W. C. Visible Light Photocatalysis in Organic Chemistry, Wiley-VCH, Hoboken, New Jersey, 2018. |
| [14] | (b) Marzo, L.; Pagire, S.; Reiser, O.; Kçnig, B. Angew. Chem., Int. Ed. 2018, 57, 10034. |
| [15] | In the process of sorting out data and papers, similar work has been reported. See: Wu, Y. T.; Li, M. R.; Sun, J. Q.; Zheng, G. F.; Zhang, Q. Angew. Chem., Int. Ed. 2022, 61, e202117340. |
/
| 〈 |
|
〉 |