ARTICLES

Addition of Benzyne to 2-Hydroxypyrimidine to Synthesize 2-Aryloxypyrimidine Derivatives under Mild Conditions

  • Wenpeng Wang ,
  • Chunhong Yang ,
  • Haichao Liu ,
  • Xicun Wang ,
  • Zhengjun Quan
Expand
  • College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070
†These authors contributed equally to this work.

Received date: 2022-06-08

  Revised date: 2022-07-12

  Online published: 2022-07-14

Supported by

National Natural Science Foundation of China(22067018); National Natural Science Foundation of China(22101232); Natural Science Foundation of Gansu Province(20YF3GA023); Natural Science Foundation of Gansu Province(20JR5RA210)

Abstract

Pyrimidine aryl ether derivatives have attracted widespread attention from chemists for their diverse biological activity and pharmacological properties. In this paper, a series of pyrimidine-2-arylether derivatives were synthesized with moderate to good yield by using 2-(trimethylsilyl)phenyl trifluoromethanesulfonate as a source of benzyne to react with 2-hydroxypyrimidine. Compared with the traditional method, this method has the advantages of transition-metal-free, easy preparation of 2-aryloxypyrimidine derivatives, wide functional group compatibility and high yield.

Cite this article

Wenpeng Wang , Chunhong Yang , Haichao Liu , Xicun Wang , Zhengjun Quan . Addition of Benzyne to 2-Hydroxypyrimidine to Synthesize 2-Aryloxypyrimidine Derivatives under Mild Conditions[J]. Chinese Journal of Organic Chemistry, 2022 , 42(11) : 3835 -3842 . DOI: 10.6023/cjoc202206011

References

[1]
(a) Watanabe, M.; Koike, H.; Ishiba, T.; Okada, T.; Seo, S.; Hirai, K. Bioorg. Med. Chem. 1997, 5, 437.
[1]
(b) Lagoja, M. Chem. Biodiversity 2005, 2, 1.
[1]
(c) Scott, L. J.; Simpson, D. Drugs 2007, 67, 269.
[1]
(d) Singh, P. K.; Singh, H.; Silakari, O. Biochim. Biophys. Acta, Rev. Cancer 2016, 1866, 128.
[1]
(e) Burmester, G. R.; Bijlsma, J. W.; Cutolo, M.; McInnes, I. B. Nat. Rev. Rheumatol. 2017, 13, 443.
[1]
(f) Sammons, S. L.; Topping, D. L.; Blackwell, K. L. Curr. Cancer Drug Targets 2017, 17, 637.
[2]
Capdeville, R.; Buchdunger, E.; Zimmermann, J.; Matter, A. Nat. Rev. Drug Discovery. 2002, 1, 493.
[3]
Fischer, A. J.; Bayer, D. E.; Carriere, M. D.; Ateh, C. M.; Yim, K. Pestic. Biochem. Physiol. 2000, 68, 156.
[4]
Hirai, K.; Uchida, A.; Ohno, R. In Herbicide Classes in Development:Mode of Action, Targets, Genetic Engineering, Chemistry, Eds.: Boger, P.; Wakabayashi, K.; Hirai, K., Springer-Verlag, Berlin, Germany, 2002, p. 364.
[5]
Wu, X.; Walker, J.; Zhang, J.; Ding, S.; Schultz, P. G. Chem. Biol. 2004, 11, 1229.
[6]
Wang, J.; Sun, P.; Chen, Y. J.; Yao, H. Q.; Wang, S. Z. Sci. Rep. 2018, 8, 10923.
[7]
For selected recent examples of the nucleophilic aromatic substitutions, see: (a) Kang, F.A.; Kodah, J.; Guan, Q.; Li, X.; Murray, W. V. J. Org. Chem. 2005, 70, 1957.
[7]
(b) Wang, Y. F.; Liu, W. M.; Zhu, Y. Q.; Zou, X. M.; Hu, F. Z.; Yang, H. Z. J. Heterocycl. Chem. 2006, 43, 1275.
[7]
(c) Venu, T. D.; Khanum, S. A.; Firdouse, A.; Manuprasad, B. K.; Shashikanth, S.; Mohamed, R.; Vishwanth, B. S. Bioorg. Med. Chem. Lett. 2008, 18, 4409.
[7]
(d) Wang, X. C.; Yang, G. J.; Jia, X. D.; Zhang, Z.; Da, Y. X.; Quan, Z. J. Tetrahedron. 2011, 67, 3267.
[7]
(e) Quan, Z. J.; Jing, F. Q.; Zhang, Z.; Da, Y. X.; Wang, X. C. Chin. J. Chem. 2013, 31, 1495.
[7]
(f) Walsh, K.; Sneddon, H. F.; Moody, C. J. RSC Adv. 2014, 4, 28072.
[7]
(g) Meng, J. P.; Wang, W. W.; Chen, Y. L.; Bera, S.; Wu, J. Org. Chem. Front. 2020, 7, 267.
[8]
For selected recent examples of Ullmann-type C-O cross-coupling, see: a D'Angelo, N. (a) Bardhan, S.; D'Angelo, N.D.; Peterson, J. J.; Booker, S. K.; Fellows, I.; Dominguez, C.; Hungate, R.; Reider, P. J.; Kim, T. S. Tetrahedron Lett. 2006, 47, 5045.
[8]
(b) Bardhan, S.; Wacharasindhu, S.; Wan, Z. K.; Mansour, T. S. Org. Lett. 2009, 11, 2511.
[8]
(c) Gu, S. J.; Chen, C.; Chen, W. Z. J. Org. Chem. 2009, 74, 7203.
[8]
(d) Platon, M.; Cui, L.; Mom, S.; Richard, P.; Saeys, M.; Hierso, J. C. Adv. Synth. Catal. 2011, 353, 3403.
[8]
(e) Phan, T. N. H.; Lee, J. H.; Shin, H.; Sohn, J. H. J. Org. Chem. 2021, 86, 5423.
[9]
Liu, K. J..; Wang, Z.; Lu, L. H..; Chen, J. Y.; Zeng, F.; Lin, Y. W.; Cao, Z.; Yu, X. Y.; He, W. M. Green Chem. 2021, 23, 496.
[10]
Gui, Q. W.; Teng, F.; Yang, H.; Xun, C. P.; Huang, W. J.; Lu, Z. Q.; Zhu, M. X.; Ouyang, W. T.; He, W. M. Chem. Asian J. 2022, 17, e202101139.
[11]
Wu, Z. L.; Chen, J. Y.; Tian, X. Z.; Ouyang, W. T.; Zhang, Z. T.; He, W. M. Chin. Chem. Lett. 2022, 33, 1501.
[12]
Roberts, J. D.; Simmons, H. E. J.; Carlsmith, L. A.; Vaughan, C. W. J. Am. Chem. Soc. 1953, 75, 3290.
[13]
Himeshima, Y.; Sonoda, T.; Kobayashhi, H. Chem. Lett. 1983, 1211.
[14]
For selected examples: (a) Yang, G. Q.; Shen, C. R.; Quan, M.; Zhang, W. B. Tetrahedron 2016, 72, 333.
[14]
(b) Liu, Z. J.; Larock, R. C. J. Org. Chem. 2006, 71, 3198.
[14]
(c) Liu, Z. J.; Larock, R. C. Org. Lett. 2004, 6, 99.
[14]
(d) Thangaraj, M.; Bhojgude, S. S.; Mane, M. V.; Biju, A. T. Chem. Commun. 2016, 52, 1665.
[14]
(e) Bhardwaj, M.; Hussain, N.; Zargar, I. A.; Dasha, A. K.; Mukherjee, D. Org. Biomol. Chem. 2020, 18, 4174.
[14]
(f) Haas, T. M.; Wiesler, S.; Dürr, T.; Ripp, A.; Fouka, P.; Qiu, D. Y.; Jessen, H. J. Angew. Chem. Int. Ed. 2022, 61, e202113231.
[15]
For selected examples: (a) Xu, D. Y.; Zhao, Y. L.; Song, D. P.; Zhong, Z. L.; Feng, S. B.; Xie, X. G.; Wang, X. L.; She, X. G.; Org. Lett. 2017, 19, 3600.
[15]
(b) Xu, J. K.; Li, S. J.; Wang, H. Y. Chem. Commun. 2017, 53, 1708.
[15]
(c) Shi, J.; Qiu, D.; Wang, J.; Xu, H.; Li, Y. J. Am. Chem. Soc. 2015, 137, 5670.
[15]
(e) Rao, B.; Tang, J.; Wei, Y.; Zeng, X. Chem.-Asian. J. 2016, 11, 991.
[15]
(d) Sundalam, S. K.; Nilova, A.; Seidl, T. L.; Stuart, D. R. Angew. Chem., Int. Ed. 2016, 55, 8431.
[15]
(e) Rao, B.; Tang, J. H.; Zeng, X. M. Org. Lett. 2016, 18, 1678.
[16]
For selected examples: (a) (a) Suh, S. E.; Chenoweth, D. M. Org. Lett. 2016, 18, 4080.
[16]
(b) Bhojgude, S. S.; Baviskar, D. R.; Gonnade, R. G.; Biju, A. T. Org. Lett. 2015, 17, 6270.
[16]
(c) Zeng, Y. W.; Li, G. Y.; Hu, J. B. Angew. Chem., Int. Ed. 2015, 54, 10773.
[16]
(d) Sha, F.; Huang, X. Angew. Chem., Int. Ed. 2009, 48, 3458.
[16]
(e) Yoshida, H.; Asatsu, Y.; Mimura, Y.; Ito, Y.; Ohshita, J.; Takaki, K. Angew. Chem., Int. Ed. 2011, 50, 9676.
[17]
For selected reviews, see: (a) García-López, J. A.; Greaney, M. F. Chem. Soc. Rev. 2016, 45, 6766.
[17]
(b) Neog, K.; Gogoi, P. Org. Biomol. Chem. 2020, 18, 9549.
[17]
(c) Hazarika, H.; Gogoi, P. Org. Biomol. Chem. 2021, 19, 8466.
[17]
(d) Shi, J. R.; Li, L. G.; Li, Y. Chem. Rev. 2021, 121, 3892.
[18]
Zhou, L. J.; Li, H. J.; Zhang, W. G.; Wang, L. Chem. Commun. 2018, 54, 4822.
[19]
Zilla, M. K.; Mahajan, S.; Khajuria, R.; Gupta, V. K.; Kapoore, K. K.; Ali, A. RSC Adv. 2021, 11, 3477.
[20]
(a) Wang, X. C.; Yang, G. J.; Quan, Z. J.; Ji, P. Y.; Liang, J. L.; Ren, R. G. Synlett 2010, 1657.
[20]
(b) Quan, Z. J.; Hu, W. H.; Jia, X. D.; Zhang, Z.; Da, Y. X.; Wang, X. C. Adv. Synth. Catal. 2012, 354, 2939.
[20]
(c) Quan, Z. J.; Jing, F. Q.; Zhang, Z.; Da, Y. X.; Wang, X. C. Eur. J. Org. Chem. 2013, 31, 7175.
[20]
(d) Yan, Z. F.; Quan, Z. J.; Da, Y. X.; Zhang, Z.; Wang, X. C. Chem. Commun. 2014, 50, 13555.
[20]
(e) Du, B. X.; Quan, Z. J.; Da, Y. X.; Zhang, Z.; Wang, X. C. Adv. Synth. Catal. 2015, 357, 1270.
[20]
(f) Guo, Y.; Quan, Z. J.; Da, Y. X.; Zhang, Z.; Wang, X. C. RSC Adv. 2015, 5, 45479.
[20]
(g) Liu, X. J.; Wang, W. P.; Huo, C. D.; Wang, X. C.; Quan, Z. J. Catal. Sci. Technol. 2017, 7, 565.
[21]
Yamamoto, K.; Chen, Y. G.; Buono, F. G. Org. Lett. 2005, 7, 4673.
Outlines

/