Chinese Journal of Organic Chemistry >
Recent Advances in Synthesis of Chiral Tertiary Amines via Asymmetric Catalysis Involving Metal-Hydride Species
Received date: 2022-05-23
Revised date: 2022-07-06
Online published: 2022-08-10
Supported by
National Natural Science Foundation of China(21871088)
Chiral tertiary amines, as a class of important skeleton, exist in various drugs, natural products, and organic functional materials. Therefore, the development of efficient synthetic methods for the preparation of chiral tertiary amines has attracted much attention from chemists and become one of the research hotspots in recent years. Until now, several asymmetric catalytic methods involving metal-hydride species have been developed. According to different reaction types, the research progress in recent years is summarized from four aspects: asymmetric hydroamination, asymmetric hydrogenation, asymmetric reductive amination, and asymmetric amination of alcohols via the ‘borrowing hydrogen’ strategy. At the same time, the corresponding reaction mechanism of each strategy is introduced, and the future development of this field is envisioned.
Tianxiang Fan , Yuanyuan Liu . Recent Advances in Synthesis of Chiral Tertiary Amines via Asymmetric Catalysis Involving Metal-Hydride Species[J]. Chinese Journal of Organic Chemistry, 2022 , 42(10) : 3280 -3294 . DOI: 10.6023/cjoc202206032
| [1] | (a) Onyeagusi, C. I.; Malcolmson, S. J. ACS Catal. 2020, 10, 12507. |
| [1] | (b) Robert-Paganin, J.; Pylypenko, O.; Kikuti, C.; Sweeney, H. L.; Houdusse, A. Chem. Rev. 2020, 120, 5. |
| [1] | (c) Cai, M.; Xu, K.; Li, Y.; Nie, Z.; Zhang, L.; Luo, S. J. Am. Chem. Soc. 2021, 143, 1078. |
| [1] | (d) Mukherjee, S.; Yang, J. W.; Hoffmann, S.; List, B. Chem. Rev. 2007, 107, 5471. |
| [1] | (e) Hembury, G. A.; Borovkov, V. V.; Inoue, Y. Chem. Rev. 2008, 108, 1. |
| [2] | https://njardarson.lab.arizona.edu/content/top-pharmaceuticals-poster |
| [3] | (a) Roesky, P. W.; Müller, T. E. Angew. Chem., Int. Ed. 2003, 42, 2708. |
| [3] | (b) Müller, T. E.; Beller, M. Chem. Rev. 1998, 98, 675. |
| [3] | (c) Müller, T. E.; Hultzsch, K. C.; Yus, M.; Foubelo, F.; Tada, M. Chem. Rev. 2008, 108, 3795. |
| [4] | (a) Zhang, Z.; Butt, N. A.; Zhang, W. Chem. Rev. 2016, 116, 14769. |
| [4] | (b) Barrios-Rivera, J.; Xu, Y.; Wills, M.; Vyas, V. K. Org. Chem. Front. 2020, 7, 3312. |
| [4] | (c) Fleury, B., N.; Castillón, S.; Claver, C. ChemCatChem 2010, 2, 1346. |
| [4] | (d) Xie, J.-H.; Zhu, S.-F.; Zhou, Q.-L. Chem. Rev. 2011, 111, 1713. |
| [5] | Reshi, N. U. D.; Saptal, V. B.; Beller, M.; Bera, J. K. ACS Catal. 2021, 11, 13809. |
| [6] | Gomez, S.; Peters, J. A.; Maschmeyer, T. Adv. Synth. Catal. 2002, 344, 1037. |
| [7] | Wu, Z.; Du, S.; Gao, G.; Yang, W.; Yang, X.; Huang, H.; Chang, M. Chem. Sci. 2019, 10, 4509. |
| [8] | (a) Swain, S. P.; Shri, O.; Ravichandiran, V. Mol. Catal. 2021, 508, 111576. |
| [8] | (b) Tang, S.; Li, Z.; Shao, Y.; Sun, J. Org. Lett. 2019, 21, 7228. |
| [9] | Miki, Y.; Hirano, K.; Satoh, T.; Miura, M. Angew. Chem., Int. Ed. 2013, 52, 10830. |
| [10] | Zhu, S.; Niljianskul, N.; Buchwald, S. L. J. Am. Chem. Soc. 2013, 135, 15746. |
| [11] | (a) Jordan, A. J.; Lalic, G.; Sadighi, J. P. Chem. Rev. 2016, 116, 8318. |
| [11] | (b) Deutsch, C.; Krause, N. Chem. Rev. 2008, 108, 2916. |
| [12] | Snieckus, V.; Green, J. Synlett 2014, 25, 2258. |
| [13] | (a) Miki, Y.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2014, 16, 1498. |
| [13] | (b) Perego, L. A.; Blieck, R.; Groué, A.; Monnier, F.; Taillefer, M.; Ciofini, I.; Grimaud, L. ACS Catal. 2017, 7, 4253. |
| [14] | Perego, L. A.; Blieck, R.; Michel, J.; Ciofini, I.; Grimaud, L.; Taillefer, M.; Monnier, F. Adv. Synth. Catal. 2017, 359, 4388. |
| [15] | Niljianskul, N.; Zhu, S.; Buchwald, S. L. Angew. Chem., Int. Ed. 2015, 54, 1638. |
| [16] | Yang, Y.; Shi, S.-L.; Niu, D.; Liu, P.; Buchwald, S. L. Science 2015, 349, 62. |
| [17] | Xi, Y.; Butcher, T. W.; Zhang, J.; Hartwig, J. F. Angew. Chem., Int. Ed. 2016, 55, 776. |
| [18] | Nishikawa, D.; Hirano, K.; Miura, M. J. Am. Chem. Soc. 2015, 137, 15620. |
| [19] | Takata, T.; Nishikawa, D.; Hirano, K.; Miura, M. Chem.-Eur. J. 2018, 24, 10975. |
| [20] | Takata, T.; Hirano, K.; Miura, M. Org. Lett. 2019, 21, 4284. |
| [21] | Yu, L.; Somfai, P. Angew. Chem., Int. Ed. 2019, 58, 8551. |
| [22] | Ichikawa, S.; Dai, X.-J.; Buchwald, S. L. Org. Lett. 2019, 21, 4370. |
| [23] | Ichikawa, S.; Buchwald, S. L. Org. Lett. 2019, 21, 8736. |
| [24] | Feng, S.; Hao, H.; Liu, P.; Buchwald, S. L. ACS Catal. 2020, 10, 282. |
| [25] | Yang, Q.; Li, S.; Wang, J. ChemCatChem 2020, 12, 3202. |
| [26] | Vanable, E. P.; Kennemur, J. L.; Joyce, L. A.; Ruck, R. T.; Schultz, D. M.; Hull, K. L. J. Am. Chem. Soc. 2019, 141, 739. |
| [27] | Berthold, D.; Breit, B. Org. Lett. 2018, 20, 598. |
| [28] | Velasco-Rubio, Á.; Bernárdez, R.; Varela, J. A.; Saá, C. J. Org. Chem. 2021, 86, 10889. |
| [29] | Yang, X.-H.; Dong, V. M. J. Am. Chem. Soc. 2017, 139, 1774. |
| [30] | Adamson, N. J.; Hull, E.; Malcolmson, S. J. J. Am. Chem. Soc. 2017, 139, 7180. |
| [31] | Park, S.; Malcolmson, S. J. ACS Catal. 2018, 8, 8468. |
| [32] | Jiu, A. Y.; Slocumb, H. S.; Yeung, C. S.; Yang, X.-H.; Dong, V. M. Angew. Chem., Int. Ed. 2021, 60, 19660. |
| [33] | (a) Zhang, Z.; Butt, N. A.; Zhou, M.; Liu, D.; Zhang, W. Chin. J. Chem. 2018, 36, 443. |
| [33] | (b) Quan, M.; Wu, L.; Yang, G.; Zhang, W. Chem. Commun. 2018, 54, 10394. |
| [33] | (c) Wu, L.; Yang, G.; Zhang, W. CCS Chem. 2020, 2, 623. |
| [33] | (d) Clevenger, A. L.; Stolley, R. M.; Aderibigbe, J.; Louie, J., Chem. Rev. 2020, 120, 6124. |
| [33] | (e) Shi, D.; Wojcieszak, R.; Paul, S.; Marceau, E. Catalysts 2019, 9, 451. |
| [33] | (f) Mukherjee, A.; Milstein, D. ACS Catal. 2018, 8, 11435. |
| [34] | Pawlas, J.; Nakao, Y.; Kawatsura, M.; Hartwig, J. F. J. Am. Chem. Soc. 2002, 124, 3669. |
| [35] | Tran, G.; Shao, W.; Mazet, C. J. Am. Chem. Soc. 2019, 141, 14814. |
| [36] | Long, J.; Wang, P.; Wang, W.; Li, Y.; Yin, G. iScience 2019, 22, 369. |
| [37] | Abdine, R. A. A.; Hedouin, G.; Colobert, F.; Wencel-Delord, J. ACS Catal. 2021, 11, 215. |
| [38] | Lee, N. E.; Buchwald, S. L. J. Am. Chem. Soc. 1994, 116, 5985. |
| [39] | Tararov, V. I.; Kadyrov, R.; Riermeier, T. H.; Holz, J.; Börner, A. Tetrahedron Lett. 2000, 41, 2351. |
| [40] | Hou, G.-H.; Xie, J.-H.; Wang, L.-X.; Zhou, Q.-L. J. Am. Chem. Soc. 2006, 128, 11774. |
| [41] | Hou, G.-H.; Xie, J.-H.; Yan, P.-C.; Zhou, Q.-L. J. Am. Chem. Soc. 2009, 131, 1366. |
| [42] | Yan, P.-C.; Xie, J.-H.; Hou, G.-H.; Wang, L.-X.; Zhou, Q.-L. Adv. Synth. Catal. 2009, 351, 3243. |
| [43] | Yan, P.; Xie, J.; Zhou, Q. Chin. J. Chem. 2010, 28, 1736. |
| [44] | Ji, Y.; Feng, G.-S.; Chen, M.-W.; Shi, L.; Du, H.; Zhou, Y.-G. Org. Chem. Front. 2017, 4, 1125. |
| [45] | (a) Yasukawa, T.; Masuda, R.; Kobayashi, S. Nat. Catal. 2019, 2, 1088. |
| [45] | (b) Huang, H.; Wu, Z.; Gao, G.; Zhou, L.; Chang, M. Org. Chem. Front. 2017, 4, 1976. |
| [45] | (c) Huang, H.; Liu, X.; Zhou, L.; Chang, M.; Zhang, X. Angew. Chem., Int. Ed. 2016, 55, 5309. |
| [45] | (d) Chang, M.; Liu, S.; Huang, K.; Zhang, X. Org. Lett. 2013, 15, 4354. |
| [45] | (e) Chi, Y.; Zhou, Y.-G.; Zhang, X. J. Org. Lett. 2003, 68, 4120. |
| [46] | Jagadeesh, R. V.; Murugesan, K.; Alshammari, A. S.; Neumann, H.; Pohl, M.-M.; Radnik, J.; Beller, M. Science 2017, 358, 326. |
| [47] | Gilbert, S. H.; Tin, S.; Fuentes, J. A.; Fanjul, T.; Clarke, M. L. Tetrahedron 2021, 80, 131863. |
| [48] | Chen, Y.; He, Y.-M.; Zhang, S.; Miao, T.; Fan, Q.-H. Angew. Chem., Int. Ed. 2019, 58, 3809. |
| [49] | Wang, L.-R.; Chang, D.; Feng, Y.; He, Y.-M.; Deng, G.-J.; Fan, Q.-H. Org. Lett. 2020, 22, 2251. |
| [50] | (a) Liu, Y.; Tao, R.; Lin, Z.-K.; Yang, G.; Zhao, Y. Nat. Commun. 2021, 12, 5035. |
| [50] | (b) Yang, G.; Pan, J.; Ke, Y.-M.; Liu, Y.; Zhao, Y. Angew. Chem., Int. Ed. 2021, 60, 20689. |
| [50] | (c) Xi, X.; Li, Y.; Wang, G.; Xu, G.; Shang, L.; Zhang, Y.; Xia, L. Org. Biomol. Chem. 2019, 17, 7651. |
| [50] | (d) Corma, A.; Navas, J.; Sabater, M. J. Chem. Rev. 2018, 118, 1410. |
| [50] | (e) Irrgang, T.; Kempe, R. Chem. Rev. 2019, 119, 2524. |
| [51] | (a) Zhang, Y.; Lim, C.-S.; Sim, D. S. B.; Pan, H.-J.; Zhao, Y. Angew. Chem., Int. Ed. 2014, 53, 1399. |
| [51] | (b) Lim, C. S.; Quach, T. T.; Zhao, Y. Angew. Chem., Int. Ed. 2017, 56, 7176. |
| [51] | (c) Yang, P.; Zhang, C.; Ma, Y.; Zhang, C.; Li, A.; Tang, B.; Zhou, J. S. Angew. Chem., Int. Ed. 2017, 56, 14702. |
| [51] | (d) Xu, G.; Yang, G.; Wang, Y.; Shao, P.-L.; Y.; Xia, L.; Zhao, Y. Angew. Chem., Int. Ed. 2019, 58, 14082. |
| [51] | (e) Pan, H.-J.; Lin, Y.; Gao, T.; Lau, K. K.; Feng, W.; Yang, B.; Zhao, Y. Angew. Chem., Int. Ed. 2021, 60, 18599. |
| [51] | (f) Rong, Z.-Q.; Yu, Z.; Weng, C.; Yang, L.-C.; Lu, S.; Lan, Y.; Zhao, Y. ACS Catal. 2020, 10, 9464. |
| [52] | Fujita, K.-i.; Fujii, T.; Yamaguchi, R. Org. Lett. 2004, 6, 3525. |
| [53] | Miao, L.; DiMaggio, S. C.; Shu, H.; Trudell, M. L. Org. Lett. 2009, 11, 1579. |
/
| 〈 |
|
〉 |