REVIEWS

Progress in Synthesis of Nitrogen Heterocycles Catalyzed by Chiral Phosphine

  • Hongxia Ren ,
  • Mengmeng Ma ,
  • You Huang
Expand
  • State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071
Dedicated to the 60th anniversary of Institute of Elemento-Organic Chemistry at Nankai University.
* Corresponding author. E-mail:

Received date: 2022-08-19

  Revised date: 2022-10-11

  Online published: 2022-10-14

Supported by

National Natural Science Foundation of China(22171147); National Natural Science Foundation of China(21871148); National Natural Science Foundation of China(21672109)

Abstract

Chiral aza-heterocycles are important molecular skeletons of organic chemistry, which are extensively found in pharmaceuticals, pesticides and biologically active natural products. As a significant organic chemistry research filed, the development of efficient novel synthetic methods of them has been a challenge. Among these strategies for the synthesis of aza-heterocycles compounds, chiral phosphine organocatalysis provides a practical and powerful platform. The recent progress in synthesis of chiral nitrogen heterocycles catalyzed by chiral phosphine is summarized, and the development of this field is also prospected.

Cite this article

Hongxia Ren , Mengmeng Ma , You Huang . Progress in Synthesis of Nitrogen Heterocycles Catalyzed by Chiral Phosphine[J]. Chinese Journal of Organic Chemistry, 2022 , 42(10) : 3129 -3142 . DOI: 10.6023/cjoc202208024

References

[1]
Vitaku, E.; Smith, D. T.; Njardarson, J. T. J. Med. Chem. 2014, 57, 10257.
[2]
Das, P.; Delost, M. D.; Qureshi, M. H.; Smith, D. T.; Njardarson, J. T. J. Med. Chem. 2019, 62, 4265.
[3]
Vitaku, E.; Smith, D. T.; Njardarson, J. T. J. Med. Chem. 2014, 57, 10257.
[4]
Lu, X.; Zhang, C.; Xu, Z. Acc. Chem. Res. 2001, 34, 535.
[5]
Ye, L.; Zhou, J.; Tang, Y. Chem. Soc. Rev. 2008, 37, 1140.
[6]
Fan, Y.; Kwon, O. Chem. Commun. 2013, 49, 11588.
[7]
Xie, P.; Huang, Y. Eur. J. Org. Chem. 2013, 2013, 6213.
[8]
Xie, P.; Huang, Y. Org. Biomol. Chem. 2015, 13, 8578.
[9]
Guo, H.; Fan, Y. C.; Sun, Z.; Wu, Y.; Kwon, O. Chem. Rev. 2018, 118, 10049.
[10]
Ni, H.; Chan, W. L.; Lu, Y. Chem. Rev. 2018, 118, 9344.
[11]
Li, E.; Huang, Y. Chem. Commun. 2020, 56, 680.
[12]
Chen, S.; Salo, E.; Wheeler, K.; Kerrigan, N. Org. Lett. 2012, 14, 1784.
[13]
Zhang, C.; Lu, X. J. Org. Chem. 1995, 60, 2906.
[14]
Xu, Z.; Lu, X. Tetrahedron Lett. 1997, 38, 3461.
[15]
Jean, L.; Marinetti, A. Tetrahedron Lett. 2006, 47, 2141.
[16]
Scherer, A.; Gladysz, J. A. Tetrahedron Lett. 2006, 47, 6335.
[17]
Fleury-Bregeot, N.; Jean, L.; Retailleau, P.; Marinetti, A. Tetrahedron Lett. 2007, 63, 11920.
[18]
Pinto, N.; Fleury-Brégeot, N.; Marinetti, A. Eur. J. Org. Chem. 2009, 2009, 146.
[19]
Fang, Y.; Jacobsen, E. N. J. Am. Chem. Soc. 2008, 130, 5660.
[20]
Takizawa, S.; Inoue, N.; Hirata, S.; Sasai, H. Angew. Chem., Int. Ed. 2010, 49, 9725.
[21]
Andrews, I. P.; Kwon, O. Chem. Sci. 2012, 3, 2510.
[22]
Han, X.; Zhong, F.; Wang, Y.; Lu, Y. Angew. Chem., Int. Ed. 2012, 51, 767.
[23]
Yu, Z.; Jin, Z.; Duan, M.; Bai, R.; Lu, Y.; Lan, Y. J. Org. Chem. 2018, 83, 9729.
[24]
Cai, L.; Zhang, K.; Kwon, O. J. Am. Chem. Soc. 2016, 138, 3298.
[25]
Lundgren, R. J.; Wilsily, A.; Marion, N.; Ma, C.; Chung, Y. K.; Fu, G. C. Angew. Chem., Int. Ed. 2013, 52, 2525.
[26]
Wang, Y. Q.; Zhang, Y.; Dong, H.; Zhang, J.; Zhao, J. Eur. J. Org. Chem. 2013, 2013, 3764.
[27]
Yu, H.; Zhang, L.; Yang, Z.; Li, Z.; Zhao, Y.; Xiao, Y.; Guo, H. J. Org. Chem. 2013, 78, 8427.
[28]
Henry, C.; Xu, Q.; Fan, Y.; Martin, T.; Belding, L.; Dudding, T.; Kwon, O. J. Am. Chem. Soc. 2014, 136, 11890.
[29]
Kramer, S.; Fu, G. C. J. Am. Chem. Soc. 2015, 137, 3803.
[30]
Lee, S.; Fujiwara, Y.; Nishiguchi, A.; Kalek, M.; Fu, G. C. J. Am. Chem. Soc. 2015, 137, 4587.
[31]
Han, X.; Chan, W.-L.; Yao, W.; Wang, Y.; Lu, Y. Angew. Chem., Int. Ed. 2016, 55, 6492.
[32]
Sankar, M.; Garcia-Castro, M.; Golz, C.; Strohmann, C.; Kumar, K. RSC Adv. 2016, 6, 56537.
[33]
Sankar, M.; Garcia-Castro, M.; Golz, C.; Strohmann, C.; Kumar, K. Angew. Chem., Int. Ed. 2016, 55, 9709.
[34]
Li, E.; Jin, H.; Jia, P.; Dong, X.; Huang, Y. Angew. Chem., Int. Ed. 2016, 55, 11591.
[35]
Jin, H.; Zhang, Q.; Li, E.; Jia, P.; Li, N.; Huang, Y. Org. Biomol. Chem. 2017, 15, 7097.
[36]
Xing, J.; Lei, Y.; Gao, Y. N.; Shi, M. Org. Lett. 2017, 19, 2382.
[37]
Ni, C.; Chen, J.; Zhang, Y.; Hou, Y.; Wang, D.; Tong, X.; Zhu, S. F.; Zhou, Q. Org. Lett. 2017, 19, 3668.
[38]
Li, H.; Luo, J.; Li, B.; Yi, X.; He, Z. Org. Lett. 2017, 19, 5637.
[39]
Kitagaki, S.; Nakamura, K.; Kawabata, C.; Ishikawa, A.; Takenaga, N.; Yoshida, K. Org. Biomol. Chem. 2018, 16, 1770.
[40]
Cheng, Y.; Han, Y.; Li, P. Org. Lett. 2017, 19, 4774.
[41]
Cong, T.; Wang, H.; Li, X.; Wu, H.; Zhang, J. Chem. Commun. 2019, 55, 9176.
[42]
Wang, C.; Chen, Y.; Li, J.; Zhou, L.; Wang, B.; Xiao, Y.; Guo, H. Org. Lett. 2019, 21, 7519.
[43]
Manzano, R.; Romaniega, A.; Prieto, L.; Díaz, E.; Reyes, E.; Uria, U.; Carrillo, L.; Vicario, J. L. Org. Lett. 2020, 22, 4721.
[44]
Dai, Z.; Jin, Z. J.; Su, W.; Zeng, W.; Liu, Z.; Chen, M.; Zhou, Q. Org. Lett. 2020, 22, 7008.
[45]
Zhou, L.; Zhang, X.; Wang, Q.; Liu, M.; Wang, W.; Wu, Y.; Chen, L.; Guo, H. Org. Lett. 2021, 23, 9173.
[46]
Zhu, X.; Lan, J.; Kwon, O. J. Am. Chem. Soc. 2003, 125, 4716.
[47]
Wurz, R. P.; Fu, G. C. J. Am. Chem. Soc. 2005, 127, 12234.
[48]
Xiao, H.; Chai, Z.; Wang, H.; Wang, X.; Cao, D.; Liu, W.; Lu, Y.; Yang, Y.; Zhao, G. Chem.-Eur. J. 2011, 17, 10562.
[49]
Cowen, B.; Miller, S. J. Am. Chem. Soc. 2007, 129, 10988.
[50]
Han, X.; Wang, Y.; Zhong, F.; Lu, Y. J. Am. Chem. Soc. 2011, 133, 1726.
[51]
Shi, Z.; Tong, Q.; Leong, W.; Zhong, G. Chem.-Eur. J. 2012, 18, 9802.
[52]
Shi, Z.; Yu, P.; Loh, T.; Zhong, G. Angew. Chem., Int. Ed. 2012, 51, 7825.
[53]
Jin, Z.; Yang, R.; Tiwari, B.; Ganguly, R.; Chi, Y. Org. Lett. 2012, 14, 3226.
[54]
Zhang, X.; Chen, G.; Dong, X.; Wei, Y.; Shi, M. Adv. Synth. Catal. 2013, 355, 3351.
[55]
Takizawa, S.; Arteaga, F. A.; Yoshida, Y.; Suzuki, M.; Sasai, H. Asian J. Org. Chem. 2014, 3, 412.
[56]
Yu, H.; Zhang, L.; Li, Z.; Liu, H.; Wang, B.; Xiao, Y.; Guo, H. Tetrahedron 2014, 70, 340.
[57]
Zhang, L.; Liu, H.; Qiao, G.; Hou, Z.; Liu, Y.; Xiao, Y.; Guo, H. J. Am. Chem. Soc. 2015, 137, 4316.
[58]
Zhou, L.; Yuan, C.; Zhang, C.; Zhang, L.; Gao, Z.; Wang, C.; Liu, H.; Wu, Y.; Guo, H. Adv. Synth. Catal. 2017, 359, 2316.
[59]
Wang, Z.; Xu, H.; Su, Q.; Hu, P.; Shao, P.; He, Y.; Lu, Y. Org. Lett. 2017, 19, 3111.
[60]
Zhang, X.; Gan, K.; Liu, X.; Deng, Y.; Wang, F.; Yu, K.; Zhang, J.; Fan, C. Org. Lett. 2017, 19, 3207.
[61]
Zhang, Q.; Jin, H.; Feng, J.; Zhu, Y.; Jia, P.; Wu, C.; Huang, Y. Org. Lett. 2019, 21, 1407.
[62]
Wang, X.; Lu, M.; Su, Q.; Zhou, M.; Addepalli, Y.; Yao, W.; Wang, Z.; Lu, Y. Chem.-Asian J. 2019, 14, 3409.
[63]
Yuan, C.; Zhou, L.; Xia, M.; Sun, Z.; Wang, D.; Guo, H. Org. Lett. 2016, 18, 5644.
[64]
Ni, H.; Tang, X.; Zheng, W.; Yao, W.; Ullah, N.; Lu, Y. Angew. Chem., Int. Ed. 2017, 56, 14222.
Outlines

/