REVIEWS

Recent Progress on the Synthesis of Benzazepine Derivatives via Radical Cascade Cyclization Reactions

  • Qian Xiao ,
  • Qing-Xiao Tong ,
  • Jian-Ji Zhong
Expand
  • a School of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou, Guangdong 521041
    b Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Department of Chemistry, Shantou University, Shantou, Guangdong 515063

Received date: 2022-09-19

  Revised date: 2022-10-17

  Online published: 2022-11-08

Supported by

National Natural Science Foundation of China(22171177); National Natural Science Foundation of China(51973107)

Abstract

Benzazepines are a kind of important seven-membered nitrogen-containing heterocyclic compounds, which are extensively exisited in natural products and pharmaceuticals, and have versatile biological activity. Therefore, great attention has been focused on the green and efficient synthesis of the benzazepines. In recent years, radical cascade cyclization reactions have gradually been developed as a powerful tool for the construction of benzazepines owing to their unique advantages. In this minireview, according to the different driving force of reaction, the research progress on the synthesis of benzazepines by radical cascade cyclization reactions in the past five years is systematically summarized in terms of photochemical reactions, electrochemical reactions and thermochemical reactions.

Cite this article

Qian Xiao , Qing-Xiao Tong , Jian-Ji Zhong . Recent Progress on the Synthesis of Benzazepine Derivatives via Radical Cascade Cyclization Reactions[J]. Chinese Journal of Organic Chemistry, 2022 , 42(12) : 3979 -3994 . DOI: 10.6023/cjoc202209025

References

[1]
Lebegue, N.; Gallet, S.; Flouquet, N.; Carato, P.; Pfeiffer, B.; Renard, P.; Léonce, S.; Pierré, A.; Chavatte, P.; Berthelot, P. J. Med. Chem. 2005, 48, 7363.
[2]
Gilleron, P.; Wlodarczyk, N.; Houssin, R.; Farce, A.; Laconde, G.; Goossens, J.-F.; Lemoine, A.; Pommery, N.; Hénichart, J.-P.; Millet, R. Bioorg. Med. Chem. Lett. 2007, 17, 5465.
[3]
Srinivasa Rao, D. V. N.; Dandala, R.; Handa, V. K.; Sivakumaran, M.; Raghava Reddy, A. V.; Naidu, A. Org. Prep. Proced. Int. 2007, 39, 399.
[4]
Al-Qawasmeh, R. A.; Lee, Y.; Cao, M.-Y.; Gu, X.; Viau, S.; Lightfoot, J.; Wright, J. A.; Young, A. H. Bioorg. Med. Chem. Lett. 2009, 19, 104.
[5]
Aoyama, A.; Endo-Umeda, K.; Kishida, K.; Ohgane, K.; Noguchi- Yachide, T.; Aoyama, H.; Ishikawa, M.; Miyachi, H.; Makishima, M.; Hashimoto, Y. J. Med. Chem. 2012, 55, 7360.
[6]
Watthey, J. W. H.; Stanton, J. L.; Desai, M.; Babiarz, J. E.; Finn, B. M. J. Med. Chem. 1985, 28, 1511.
[7]
O’Grady, M. R.; O’Sullivan, M. L.; Minors, S. L.; Horne, R. J. Vet. Intern. Med. 2009, 23, 977.
[8]
ter Laak, A. M.; Venhorst, J.; Donne-Op den Kelder, G. M.; Timmerman, H. J. Med. Chem. 1995, 38, 3351.
[9]
Wagstaff, A. J.; Ormrod, D.; Spencer, C. M. CNS Drugs 2001, 15, 231.
[10]
Gassaway, M. M.; Rives, M.-L.; Kruegel, A. C.; Javitch, J. A.; Sames, D. Transl. Psychiatry 2014, 4, e411.
[11]
Yang, B. H.; Buchwald, S. L. Org. Lett. 1999, 1, 35.
[12]
Merten, S.; Fr?hlich, R.; Kataeva, O.; Metz, P. Adv. Synth. Catal. 2005, 347, 754.
[13]
Cao, H.; Vieira, T. O.; Alper, H. Org. Lett. 2011, 13, 11.
[14]
Roszkowski, P.; Maurin, J. K.; Czarnocki, Z. Beilstein J. Org. Chem. 2015, 11, 1509.
[15]
Samineni, R.; Bandi, C. R. C.; Srihari, P.; Mehta, G. Org. Lett. 2016, 18, 6184.
[16]
Snider, B. B. Chem. Rev. 1996, 96, 339.
[17]
Xuan, J.; Studer, A. Chem. Soc. Rev. 2017, 46, 4329.
[18]
Sun, K.; Wang, X.; Li, C.; Wang, H.; Li, L. Org. Chem. Front. 2020, 7, 3100.
[19]
Liao, J.; Yang, X.; Ouyang, L.; Lai, Y.; Huang, J.; Luo, R. Org. Chem. Front. 2021, 8, 1345.
[20]
Zhou, X.; Zhang, A.; Zhang, Q.; Liu, Q.; Xuan, J. Chin. J. Org. Chem. 2022, 42, 2488. (in Chinese)
[20]
( 周旭煜, 张爱君, 张庆庆, 刘庆安, 宣俊, 有机化学, 2022, 42, 2488.)
[21]
Chen, B.; Wu, L. Z.; Tung, C. H. Acc. Chem. Res. 2018, 51, 2512.
[22]
Guo, W.; Tao, K.; Tan, W.; Zhao, M.; Zheng, L.; Fan, X. Org. Chem. Front. 2019, 6, 2048.
[23]
Zhang, H.; Xiao, Q.; Qi, X.-K.; Gao, X.-W.; Tong, Q.-X.; Zhong, J.-J. Chem. Commun. 2020, 56, 12530.
[24]
Yu, X.-Y.; Zhao, Q.-Q.; Chen, J.; Xiao, W.-J.; Chen, J.-R. Acc. Chem. Res. 2020, 53, 1066.
[25]
Xiao, Q.; Zhang, H.; Li, J.-H.; Jian, J.-X.; Tong, Q.-X.; Zhong, J.-J. Org. Lett. 2021, 23, 3604.
[26]
Bell, J. D.; Murphy, J. A. Chem. Soc. Rev. 2021, 50, 9540.
[27]
Lu, F.-D.; Chen, J.; Jiang, X.; Chen, J.-R.; Lu, L.-Q.; Xiao, W.-J. Chem. Soc. Rev. 2021, 50, 12808.
[28]
Yu, X.; Chen, J.; Xiao, W. Chem. Rev. 2021, 121, 506.
[29]
Yin, Y.; Zhao, X.; Jiang, Z. Chin. J. Org. Chem. 2022, 42, 1609. (in Chinese)
[29]
( 尹艳丽, 赵筱薇, 江智勇, 有机化学, 2022, 42, 1609.)
[30]
Xiao, Q.; Tong, Q.-X.; Zhong, J.-J. Molecules 2022, 27, 619.
[31]
Zhao, Y.; Chen, J.-R.; Xiao, W.-J. Org. Lett. 2018, 20, 224.
[32]
Qi, X.-K.; Zhang, H.; Pan, Z.-T.; Liang, R.-B.; Zhu, C.-M.; Li, J.-H.; Tong, Q.-X.; Gao, X.-W.; Wu, L.-Z.; Zhong, J.-J. Chem. Commun. 2019, 55, 10848.
[33]
Liu, D.; Jiao, M.-J.; Wang, X.-Z.; Xu, P.-F. Org. Lett. 2019, 21, 4745.
[34]
Zhang, T.; Luo, M.; Teng, F.; Li, Y.; Hu, M.; Li, J. Adv. Synth. Catal. 2019, 361, 4645.
[35]
Yao, Y.; Yin, Z.; He, F.-S.; Qin, X.; Xie, W.; Wu, J. Chem. Commun. 2021, 57, 2883.
[36]
Qu, C.; Song, G.; Ou, J.; Tang, D.; Xu, Z.; Chen, Z. Chin. J. Chem. 2021, 39, 2220.
[37]
Zhou, N.; Kuang, K.; Wu, M.; Wu, S.; Xia, Z.; Xu, Q.; Zhang, M. Org. Chem. Front. 2021, 8, 4095.
[38]
Li, J.; Huang, C.-Y.; Han, J.-T.; Li, C.-J. ACS Catal. 2021, 11, 14148.
[39]
Wang, L.; Zhang, Y.; Zhu, T.; Wu, J. J. Org. Chem. 2022, 87, 7551.
[40]
Xiao, Q.; Lu, M.; Deng, Y.; Jian, J.-X.; Tong, Q.-X.; Zhong, J.-J. Org. Lett. 2021, 23, 9303.
[41]
Zheng, X.; Shen, Q.; Yin, C.; Li, L.; Zhong, T.; Yu, C. Adv. Synth. Catal. 2022, 364, 1750.
[42]
Chen, S.; Yan, Q.; Fan, J.; Gao, Y.; Yang, X.; Li, L.; Liu, Z.; Li, Z. Green Chem. 2022, 24, 4742.
[43]
Yuan, Y.; Lei, A. Acc. Chem. Res. 2019, 52, 3309.
[44]
Xiong, P.; Xu, H.-C. Acc. Chem. Res. 2019, 52, 3339.
[45]
Chen, N.; Xu, H. Chem. Rec. 2021, 21, 2306.
[46]
Liu, Y.; Wang, Z.; Meng, J.; Li, C.; Sun, K. Chin. J. Org. Chem. 2022, 42, 100. (in Chinese)
[46]
( 刘颖杰, 王智传, 孟建萍, 李晨, 孙凯, 有机化学, 2022, 42, 100.)
[47]
Li, Y.; Hu, M.; Li, J.-H. ACS Catal. 2017, 7, 6757.
[48]
Li, Y.; Li, J.-H. Org. Lett. 2018, 20, 5323.
[49]
Pan, G.-A.; Li, Y.; Li, J.-H. Org. Chem. Front. 2020, 7, 2486.
[50]
Zhang, Z.-Q.; Xu, Y.-H.; Dai, J.-C.; Li, Y.; Sheng, J.; Wang, X.-S. Org. Lett. 2021, 23, 2194.
[51]
Chen, X.; Pei, C.; Liu, B.; Li, J.; Zou, D.; Wu, Y.; Wu, Y. Chem. Commun. 2022, 1.
[52]
Ren, Y.; Yan, Q.; Li, Y.; Gao, Y.; Zhao, J.; Li, L.; Liu, Z.-Q.; Li, Z. J. Org. Chem. 2022, 87, 8773.
[53]
Xiong, P.; Xu, H.-H.; Song, J.; Xu, H.-C. J. Am. Chem. Soc. 2018, 140, 2460.
Outlines

/