REVIEWS

Oxidative Rearrangement Reactions Mediated by Hypervalent-Iodine Reagents

  • Zhifang Yang ,
  • Yifu Cheng ,
  • Beibei Zhang ,
  • Yunyi Dong ,
  • Chi Han ,
  • Yunfei Du
Expand
  • Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072

Received date: 2022-06-19

  Revised date: 2022-07-18

  Online published: 2022-08-09

Supported by

National Natural Science Foundation of China(22071175)

Abstract

During the past 40 years, hypervalent-iodine chemistry has developed rapidly and extensive attention has been received from many organic researchers. For their advantages of low toxicity, easy preparation and environmental benignity, hypervalent iodine reagents have been widely applied in various types of organic transformation including oxidative coupling, functionalization, and rearrangement reactions. Among them, there exist a series of oxidative rearrangement reactions, which can be classified into many types including C to X migration (X=C, N or O), X to C migration (X=N, O, S, Si or I), I to X migration (X=O or N) and sigmatropic rearrangement. This review comprehensively summarizes the oxidative rearrangement reactions enabled by hypervalent iodine reagents, providing convenience for organic readers to learn the progress of this research field.

Cite this article

Zhifang Yang , Yifu Cheng , Beibei Zhang , Yunyi Dong , Chi Han , Yunfei Du . Oxidative Rearrangement Reactions Mediated by Hypervalent-Iodine Reagents[J]. Chinese Journal of Organic Chemistry, 2022 , 42(11) : 3456 -3505 . DOI: 10.6023/cjoc202206039

References

[1]
(a) Moriarty, R. M. J. Org. Chem. 2005, 70, 2893.
[1]
(b) Zhang, B.; Li, X.; Guo, B.; Du, Y. Chem. Commun. (Cambridge, U. K.) 2020, 56, 14119.
[1]
(c) Kohlhepp, S. V.; Gulder, T. Chem. Soc. Rev. 2016, 45, 6270.
[1]
(d) Arnold, A. M.; Ulmer, A.; Gulder, T. Chem. Eur. J. 2016, 22, 8728.
[1]
(e) Han, Z.-Z.; Zhang, C.-P. Adv. Synth. Catal. 2020, 362, 4256.
[1]
(f) Shafir, A. Tetrahedron Lett. 2016, 57, 2673.
[1]
(g) Buendia, J.; Darses, B.; Dauban, P. Angew. Chem., Int. Ed. 2015, 54, 5697.
[1]
(h) Grelier, G.; Darses, B.; Dauban, P. Beilstein J. Org. Chem. 2018, 14, 1508.
[1]
(i) Zhang, X.; Cong, Y.; Lin, G.; Guo, X.; Cao, Y.; Lei, K.; Du, Y. Chin. J. Org. Chem. 2016, 36, 2513. (in Chinese)
[1]
( 张翔, 丛颖, 林光宇, 郭旭亮, 曹阳, 雷坤华, 杜云飞, 有机化学 2016, 36, 2513.)
[1]
(j) Li, X.; Liu, T.; Zhang, B.; Zhang, D.; Shi, H.; Yu, Z.; Tao, S.; Du, Y. Curr. Org. Chem. 2020, 24, 74.
[1]
(k) Chen, W. W.; Cuenca, A. B.; Shafir, A. Angew. Chem., Int. Ed. 2020, 59, 16294.
[1]
(l) Hyatt, I. F. D.; Dave, L.; David, N.; Kaur, K.; Medard, M.; Mowdawalla, C. Org. Biomol. Chem. 2019, 17, 7822.
[1]
(m) Kida, M.; Sueda, T.; Goto, S.; Okuyama, T.; Ochiai, M. Chem. Commun. 1996, 16, 1933.
[1]
(n) Duan, X.; Duan, X.; Yang, K.; Wang, Z.; Zhang, L.; Tong, Y.; Liu, H.; Du, K.; Tang, R. Chin. J. Org. Chem. 2015, 35, 2552. (in Chinese)
[1]
( 段希焱, 段希斌, 杨坤, 王志成, 张璐, 佟悦, 刘浩哲, 杜珂, 唐榕泽, 有机化学 2015, 35, 2552.)
[2]
Yang, X.-G.; Zheng, K.; Zhang, C. Org. Lett. 2020, 22, 2026.
[3]
Wirth, T.; Hirt, U. H. Synthesis 1999, 1271.
[4]
(a) Silva, L. F.; Olofsson, B. Nat. Prod. Rep. 2011, 28, 1722.
[4]
(b) Stang, P. J.; Zhdankin, V. V. Chem. Rev. 1996, 96, 1123.
[4]
(c) Zhdankin, V. V.; Stang, P. J. Chem. Rev. 2008, 108, 5299.
[4]
(d) Silva, L. F. Molecules 2006, 11, 421.
[4]
(e) Koser, G. F. Adv. Heterocycl. Chem. 2004, 86, 225.
[5]
(a) Dimroth, O.; Bockemüller, W. Ber. Dtsch. Chem. Ges. 1931, 64, 516.
[5]
(b) Bornstein, J.; Borden, M. R.; Nunes, F.; Tarlin, H. I. J. Am. Chem. Soc. 1963, 85, 1609.
[5]
(c) Carpenter, W. J. Org. Chem. 1966, 31, 2688.
[6]
(a) Koser, G. F.; Rebrovic, L.; Wettach, R. H. J. Org. Chem. 1981, 46, 4324.
[6]
(b) Rebrovic, L.; Koser, G. F. J. Org. Chem. 1984, 49, 2462.
[6]
(c) Moriarty, R. M.; Vaid, R. K.; Koser, G. F. Synlett 1990, 365.
[6]
(d) Justik, M. W.; Koser, G. F. Tetrahedron Lett. 2004, 45, 6159.
[7]
Moriarty, R. M.; Khosrowshahi, J. S.; Prakash, O. Tetrahedron Lett. 1985, 26, 2961.
[8]
Koser, G. F.; Wettach, R. H.; Troup, J. M.; Frenz, B. A. J. Org. Chem. 1976, 41, 3609.
[9]
(a) Singh, O. V.; Garg, C. P.; Kapoor, R. P. Synthesis 1990, 1025.
[9]
(b) Yusubov, M. S.; Zholobova, G. A. Russ. J. Org. Chem. 2001, 37, 1179.
[10]
(a) Tamura, Y.; Shirouchi, Y.; Haruta, J. Synthesis 1984, 231.
[10]
(b) Tamura, Y.; Yakura, T.; Shirouchi, Y.; Haruta, J. Chem. Pharm. Bull. 1985, 33, 1097.
[10]
(c) Togo, H.; Nogami, G.; Yokoyama, M. Synlett 1998, 534.
[10]
(d) Togo, H.; Abe, S.; Nogami, G.; Yokoyama, M. Bull. Chem. Soc. Jpn. 1999, 72, 2351.
[10]
(e) Iinuma, M.; Moriyama, K.; Togo, H. Tetrahedron 2013, 69, 2961.
[10]
(f) Justik, M. W. Tetrahedron Lett. 2007, 48, 3003.
[11]
Purohit, V. C.; Allwein, S. P.; Bakale, R. P. Org. Lett. 2013, 15, 1650.
[12]
(a) Liu, L.; Du, L.; Zhang-Negrerie, D.; Du, Y.; Zhao, K. Org. Lett. 2014, 16, 5772.
[12]
(b) Liu, L.; Zhang-Negrerie, D.; Du, Y.; Zhao, K. Synthesis 2015, 47, 2924.
[12]
(c) Liu, Z.; Huang, F.; Wu, P.; Wang, Q.; Yu, Z. J. Org. Chem. 2018, 83, 5731.
[12]
(d) Kamal, R.; Kumar, V.; Kumar, R.; Saini, S.; Kumar, R. Synlett 2020, 31, 959.
[13]
Chen, J.-M.; Huang, X. Synthesis 2004, 2459.
[14]
Moriarty, R. M.; Hopkins, T. E.; Vaid, R. K.; Vaid, B. K.; Levy, S. G. Synthesis 1992, 847.
[15]
(a) Pirguliyev, N. S.; Brel, V. K.; Zefirova, N. S.; Stang, P. J. Mendeleev Commun. 1999, 9, 189.
[15]
(b) Zhdankin, V. V.; Stang, P. J. Chem. Rev. 2002, 102, 2523.
[16]
Kiyokawa, K.; Kosaka, T.; Kojima, T.; Minakata, S. Angew. Chem., Int. Ed. 2015, 54, 13719.
[17]
Prakash, O.; Pahuja, S.; Goyal, S.; Sawhney, S. N.; Moriarty, R. M. Synlett 1990, 337.
[18]
Kwesiga, G.; Sperlich, E.; Schmidt, B. J. Org. Chem. 2021, 86, 10699.
[19]
(a) Bovonsombat, P.; McNelis, E. Tetrahedron Lett. 1992, 33, 7705.
[19]
(b) Angara, G. J.; Bovonsombat, P.; McNeils, E. Tetrahedron Lett. 1992, 33, 2285.
[19]
(c) Janas, J. J.; Asirvatham, E. T.; McNelis, E. Tetrahedron Lett. 1985, 26, 1967.
[20]
Kasumov, T. M.; Pirguliyev, N. S.; Brel, V. K.; Grishin, Y. K.; Zefirov, N. S.; Stang, P. J. Tetrahedron 1997, 53, 13139.
[21]
(a) Moriarty, R. M.; Vaid, R. K.; Duncan, M. P.; Vaid, B. K. Tetrahedron Lett. 1987, 28, 2845.
[21]
(b) Lipshutz, B. H.; Vaccaro, W.; Huff, B. Tetrahedron Lett. 1986, 27, 4095.
[21]
(c) Yamauchi, T.; Hattori, K.; Nakao, K.; Tamaki, K. Synthesis 1986, 1044.
[22]
Farid, U.; Malmedy, F.; Claveau, R.; Albers, L.; Wirth, T. Angew. Chem., Int. Ed. 2013, 52, 7018.
[23]
Brown, M.; Kumar, R.; Rehbein, J.; Wirth, T. Chem. Eur. J. 2016, 22, 4030.
[24]
Qurban, J.; Elsherbini, M.; Wirth, T. J. Org. Chem. 2017, 82, 11872.
[25]
Pandey, C. B.; Azaz, T.; Verma, R. S.; Mishra, M.; Jat, J. L.; Tiwari, B. J. Org. Chem. 2020, 85, 10175.
[26]
Malmedy, F.; Wirth, T. Chem. Eur. J. 2016, 22, 16072.
[27]
Zhang, D.-Y.; Zhang, Y.; Wu, H.; Gong, L.-Z. Angew. Chem., Int. Ed. 2019, 58, 7450.
[28]
Hu, L.; Gao, T.; Deng, Q.; Xiong, Y. Tetrahedron 2021, 95, 132334.
[29]
(a) Miki, Y.; Fujita, R.; Matsushita, K. J. Chem. Soc., 1998, 2533.
[29]
(b) Kawamura, Y.; Maruyama, M.; Tokuoka, T.; Tsukayama, M. Synthesis 2002, 2490.
[29]
(c) Kawamura, Y.; Maruyama, M.; Yamashita, K.; Tsukayama, M. Int. J. Mod. Phys. B 2003, 17, 1482.
[29]
(d) Tokuoka, T.; Yamashita, K.; Kawamura, Y.; Tsukayama, M.; M, Hossain M. Synth. Commun. 2006, 36, 1201.
[29]
(e) Hossain, M. M.; Kawamura, Y.; Yamashita, K.; Tsukayama, M. Tetrahedron 2006, 62, 8625.
[29]
(f) Kwesiga, G.; Kelling, A.; Kersting, S.; Sperlich, E.; von Nickisch-Rosenegk, M.; Schmidt, B. J. Nat. Prod. 2020, 83, 3445.
[30]
Prakash, O.; Kumar, A.; Sadana, A. K.; Singh, S. P. Synthesis 2006, 21.
[31]
Boye, A. C.; Meyer, D.; Ingison, C. K.; French, A. N.; Wirth, T. Org. Lett. 2003, 5, 2157.
[32]
Singh, F. V.; Rehbein, J.; Wirth, T. ChemistryOpen 2012, 1, 245.
[33]
Zhang, J.; Jalil, A.; He, J.; Yu, Z.; Cheng, Y.; Li, G.; Du, Y.; Zhao, K. Chem. Commun. (Cambridge, U. K.) 2021, 57, 7426.
[34]
Alazet, S.; Vaillant, F. L.; Nicolai, S.; Courant, T.; Waser, J. Chem. Eur. J. 2017, 23, 9501.
[35]
Huang, J.; Liang, Y.; Pan, W.; Yang, Dong D. Org. Lett. 2007, 9, 5345.
[36]
Wang, S.-E.; He, Q.; Fan, R. Org. Lett. 2017, 19, 6478.
[37]
Xia, H.-D.; Zhang, Y.-D.; Wang, Y.-H.; Zhang, C. Org. Lett. 2018, 20, 4052.
[38]
(a) Liu, L.; Lu, H.; Wang, H.; Yang, C.; Zhang, X.; Zhang-Negrerie, D.; Du, Y.; Zhao, K. Org. Lett. 2013, 15, 2906.
[38]
(b) Liu, L.; Zhang, T.; Yang, Y.-F.; Zhang-Negrerie, D.; Zhang, X.; Du, Y.; Wu, Y.-D.; Zhao, K. J. Org. Chem. 2016, 81, 4058.
[39]
(a) Maiti, S.; Mal, P. Org. Lett. 2017, 19, 2454.
[39]
(b) Bal, A.; Maiti, S.; Mal, P. J. Org. Chem. 2018, 83, 11278.
[40]
(a) Zupan, M.; Pollak, A. J. Chem. Soc., Chem. Commun. 1975, 715.
[40]
(b) Patrick, T. B.; Scheibel, J. J.; Hall, W. E.; Lee, Y. H. J. Org. Chem. 1980, 45, 4492.
[40]
(c) ?ket, B.; Zupan, M.; Zupet, P. Tetrahedron 1984, 40, 1603.
[40]
(d) Lermontov, S. A.; Rakov, I. M.; Zefirov, N. S.; Stang, P. J. J. Fluorine Chem. 1999, 93, 103.
[40]
(e) Sawaguchi, M.; Hara, S.; Yoneda, N. J. Fluorine Chem. 2000, 105, 313.
[40]
(f) Patrick, T. B.; Qian, S. Org. Lett. 2000, 2, 3359.
[40]
(g) Ye, C.; Twamley, B.; Shreeve, J. M. Org. Lett. 2005, 7, 3961.
[40]
(h) Gregorcic, A.; Zupan, M. Bull. Chem. Soc. Jpn. 1977, 50, 517.
[41]
Scheidt, F.; Sch?fer, M.; Sarie, J. C.; Daniliuc, C. G.; Molloy, J. J.; Gilmour, R. Angew. Chem., Int. Ed. 2018, 57, 16431.
[42]
Ilchenko, N. O.; Tasch, B. O. A.; Szabó, K. J. Angew. Chem., Int. Ed. 2014, 53, 12897.
[43]
Ilchenko, N. O.; Szabó, K. J. J. Fluorine Chem. 2017, 203, 104.
[44]
Geary, G. C.; Hope, E. G.; Stuart, A. M. Angew. Chem., Int. Ed. 2015, 54, 14911.
[45]
Ulmer, A.; Brunner, C.; Arnold, A. M.; P?thig, A.; Gulder, T. Chem. Eur. J. 2016, 22, 3660.
[46]
Zhao, Z.; Racicot, L.; Murphy, G. K. Angew. Chem., Int. Ed. 2017, 56, 11620.
[47]
Kitamura, T.; Muta, K.; Oyamada, J. J. Org. Chem. 2015, 80, 10431.
[48]
Lv, W.-X.; Li, Q.; Li, J.-L.; Li, Z.; Lin, E.; Tan, D.-H.; Cai, Y.-H.; Fan, W.-X.; Wang, H. Angew. Chem., Int. Ed. 2018, 57, 16544.
[49]
Li, H.; Prasad Reddy, B. R.; Bi, X. Org. Lett. 2019, 21, 9358.
[50]
Ning, Y.; Sivaguru, P.; Zanoni, G.; Anderson, E. A.; Bi, X. Chem 2020, 6, 486.
[51]
Li, C.; Liao, Y.; Tan, X.; Liu, X.; Liu, P.; Lv, W.-X.; Wang, H. Sci. China: Chem. 2021, 64, 999.
[52]
Levin, M. D.; Ovian, J. M.; Read, J. A.; Sigman, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 2020, 142, 14831.
[53]
Banik Steven, M.; Medley Jonathan, W.; Jacobsen Eric, N. Science 2016, 353, 51.
[54]
Scheidt, F.; Neufeld, J.; Sch?fer, M.; Thiehoff, C.; Gilmour, R. Org. Lett. 2018, 20, 8073.
[55]
Kitamura, T.; Yoshida, K.; Mizuno, S.; Miyake, A.; Oyamada, J. J. Org. Chem. 2018, 83, 14853.
[56]
(a) Liu, X.; Xiong, F.; Huang, X.; Xu, L.; Li, P.; Wu, X. Angew. Chem., Int. Ed. 2013, 52, 6962.
[56]
(b) Liu, X.; Wu, X. Synlett 2013, 24, 1882.
[56]
(c) Zhao, J.; Fang, H.; Song, R.; Zhou, J.; Han, J.; Pan, Y. Chem. Commun. 2015, 51, 599.
[57]
(a) Chen, Z.-M.; Bai, W.; Wang, S.-H.; Yang, B.-M.; Tu, Y.-Q.; Zhang, F.-M. Angew. Chem., Int. Ed. 2013, 52, 9781.
[57]
(b) Chen, Z.-M.; Zhang, X.-M.; Tu, Y.-Q. Chem. Soc. Rev. 2015, 44, 5220.
[58]
Egami, H.; Shimizu, R.; Usui, Y.; Sodeoka, M. Chem. Commun. 2013, 49, 7346.
[59]
Gao, P.; Shen, Y.-W.; Fang, R.; Hao, X.-H.; Qiu, Z.-H.; Yang, F.; Yan, X.-B.; Wang, Q.; Gong, X.-J.; Liu, X.-Y.; Liang, Y.-M. Angew. Chem., Int. Ed. 2014, 53, 7629.
[60]
(a) Moriarty, R. M.; Prakash, I.; Musallam, H. A. Tetrahedron Lett. 1984, 25, 5867.
[60]
(b) Daum, S. J. Tetrahedron Lett. 1984, 25, 4725.
[61]
(a) Iglesias-Arteaga, M. A.; Velázquez-Huerta, G. A. Tetrahedron Lett. 2005, 46, 6897.
[61]
(b) Sánchez-Flores, J.; Romero-ávila, M.; Rosado-Abón, A.; Flores-álamo, M.; Iglesias-Arteaga, M. A. Steroids 2013, 78, 798.
[62]
(a) Hatzigrigoriou, E.; Spyroudis, S.; Varvoglis, A. Liebigs Ann. Chem. 1989, 1989, 167.
[62]
(b) Papoutsis, I.; Spyroudis, S.; Varvoglis, A. Tetrahedron Lett. 1994, 35, 8449.
[63]
(a) Spyroudis, S.; Xanthopoulou, N. J. Org. Chem. 2002, 67, 4612.
[63]
(b) Malamidou-Xenikaki, E.; Spyroudis, S.; Tsanakopoulou, M. J. Org. Chem. 2003, 68, 5627.
[64]
(a) Prakash, O.; Tanwar, M. P. Bull. Chem. Soc. Jpn. 1995, 68, 1168.
[64]
(b) Juhász, L.; Szilágyi, L.; Antus, S.; Visy, J.; Zsila, F.; Simonyi, M. Tetrahedron 2002, 58, 4261.
[65]
(a) Moriarty, R. M.; Enache, L. A.; Zhao, L.; Gilardi, R.; Mattson, M. V.; Prakash, O. J. Med. Chem. 1998, 41, 468.
[65]
(b) Varma, R. S.; Kumar, D. Synthesis 1999, 1288.
[66]
(a) Zefirov, N. S.; Caple, R.; Palyulin, V. A.; Berglund, B.; Tykvinskii, R.; Zhdankin, V. V.; Kozmin, A. S. Bull. Acad. Sci. USSR, Div. Chem. Sci. 1988, 37, 1289.
[66]
(b) Moriarty, R. M.; Prakash, O.; Duncan, M. P.; Vaid, R. K.; Rani, N. J. Chem. Res., Synop. 1996, 9, 432.
[67]
(a) Yusubov, M. S.; Zholobova, G. A.; Filimonova, I. L.; Chi, K.-W. Russ. Chem. Bull. 2004, 53, 1735.
[67]
(b) Koposov, A. Y.; Netzel, B. C.; Yusubov, M. S.; Nemykin, V. N.; Nazarenko, A. Y.; Zhdankin, V. V. Eur. J. Org. Chem. 2007, 2007, 4475.
[67]
(c) Yusubov, M. S.; Yusubova, R. Y.; Funk, T. V.; Chi, K.-W.; Zhdankin, V. V. Synthesis 2009, 2505.
[68]
(a) Siqueira, F. A.; Ishikawa, E. E.; Foga?a, A.; Faccio, A. T.; Carneiro, V. M.; Soares, R. R.; Utaka, A.; Tébéka, I. R.; Bielawski, M.; Olofsson, B.; Silva, L. F. J. Braz. Chem. Soc. 2011, 22, 1795.
[68]
(b) Ahmad, A.; Silva, L. F. Synthesis 2012, 44, 3671.
[68]
(c) Ahmad, A.; Silva, L. F. J. Braz. Chem. Soc. 2016, 27, 1820.
[68]
(d) Khan, A.; Silva, L. F.; Rabnawaz, M. New J. Chem. 2021, 45, 2078.
[69]
Ahmad, A.; Scarassati, P.; Jalalian, N.; Olofsson, B.; Silva, L. F. Tetrahedron Lett. 2013, 54, 5818.
[70]
(a) Kirschning, A. Liebigs Ann. 1995, 1995, 2053.
[70]
(b) Kirschning, A. Eur. J. Org. Chem. 1998, 1998, 2267.
[70]
(c) Harders, J.; Garming, A.; Jung, A.; Kaiser, V.; Monenschein, H.; Ries, M.; Rose, L.; Sch?ning, K.-U.; Weber, T.; Kirschning, A. Liebigs Ann. 1997, 1997, 2125.
[71]
Hara, S.; Nakahigashi, J.; Ishi-i, K.; Fukuhara, T.; Yoneda, N. Tetrahedron Lett. 1998, 39, 2589.
[72]
Han, Y.-C.; Zhang, Y.-D.; Jia, Q.; Cui, J.; Zhang, C. Org. Lett. 2017, 19, 5300.
[73]
(a) Silva, L. F.; Siqueira, F. A.; Pedrozo, E. C.; Vieira, F. Y. M.; Doriguetto, A. C. Org. Lett. 2007, 9, 1433.
[73]
(b) Kameyama, M.; Siqueira, F. A.; Garcia-Mijares, M.; Silva, L. F.; Silva, M. T. A. Molecules 2011, 16.
[73]
(c) da Silva, V. H. M.; Silva, L. F.; Braga, A. A. C. ChemistrySelect 2016, 1, 2706.
[74]
Ahmad, A.; Silva, L. F. J. Org. Chem. 2016, 81, 2174.
[75]
Tada, N.; Miyamoto, K.; Ochiai, M. Chem. Pharm. Bull. 2004, 52, 1143.
[76]
Bhattacherjee, D.; Thakur, V.; Sharma, S.; Kumar, S.; Bharti, R.; Reddy, C. B.; Das, P. Adv. Synth. Catal. 2017, 359, 2209.
[77]
Sun, Y.; Huang, X.; Li, X.; Luo, F.; Zhang, L.; Chen, M.; Zheng, S.; Peng, B. Adv. Synth. Catal. 2018, 360, 1082.
[78]
Feng, S.-X.; Yang, S.; Tu, F.-H.; Lin, P.-P.; Huang, L.-L.; Wang, H.; Huang, Z.-S.; Li, Q. J. Org. Chem. 2021, 86, 6800.
[79]
Moriarty, R. M.; Vaid, R. K.; Hopkins, T. E.; Vaid, B. K.; Prakash, O. Tetrahedron Lett. 1990, 31, 197.
[80]
Gabbutt, C. D.; Hepworth, J. D.; Heron, B. M.; Thomas, J.-L. Tetrahedron Lett. 1998, 39, 881.
[81]
Li, X.; Xu, Z.; DiMauro, E. F.; Kozlowski, M. C. Tetrahedron Lett. 2002, 43, 3747.
[82]
(a) Bovonsombat, P.; McNelis, E. Tetrahedron 1993, 49, 1525.
[82]
(b) Herault, X.; McNelis, E. Tetrahedron 1996, 52, 10267.
[82]
(c) Bovonsombat, P.; McNelis, E. Tetrahedron Lett. 1993, 34, 4277.
[82]
(d) Djuardi, E.; Bovonsombat, P.; Mc Nelis, E. Tetrahedron 1994, 50, 11793.
[82]
(e) Bovonsombat, P.; Mc Nelis, E. Tetrahedron Lett. 1994, 35, 6431.
[82]
(f) Bovonsombat, P.; Nelis, E. M. Synth. Commun. 1995, 25, 1223.
[83]
Silva, L. F.; Vasconcelos, R. S.; Nogueira, M. A. Org. Lett. 2008, 10, 1017.
[84]
Silva, S. B.; Torre, A. D.; De Carvalho, J. E.; Ruiz, A. L.; Silva, L. F. Molecules 2015, 20, 1475.
[85]
Alazet, S.; Preindl, J.; Simonet-Davin, R.; Nicolai, S.; Nanchen, A.; Meyer, T.; Waser, J. J. Org. Chem. 2018, 83, 12334.
[86]
De Mico, A.; Margarita, R.; Piancatelli, G. Tetrahedron Lett. 1995, 36, 3553.
[87]
Ohno, M.; Oguri, I.; Eguchi, S. J. Org. Chem. 1999, 64, 8995.
[88]
(a) Lena, J. C.; Hernando, J. M.; Ferreira, M. R. R.; Altinel, E.; Arseniyadis, S. Synlett 2001, 597.
[88]
(b) Chanu, A.; Castellote, I.; Commeureuc, A.; Safir, I.; Arseniyadis, S. Tetrahedron: Asymmetry 2006, 17, 2565.
[88]
(c) Chanu, A.; Safir, I.; Basak, R.; Chiaroni, A.; Arseniyadis, S. Eur. J. Org. Chem. 2007, 2007, 4305.
[89]
Fujioka, H.; Komatsu, H.; Nakamura, T.; Miyoshi, A.; Hata, K.; Ganesh, J.; Murai, K.; Kita, Y. Chem. Commun. (Cambridge, U. K.) 2010, 46, 4133.
[90]
(a) Inagaki, T.; Nakamura, Y.; Sawaguchi, M.; Yoneda, N.; Ayuba, S.; Hara, S. Tetrahedron Lett. 2003, 44, 4117.
[90]
(b) Abo, T.; Sawaguchi, M.; Senboku, H.; Hara, S. Molecules 2005, 10.
[91]
Justik, M.; Koser, G. Molecules 2005, 10.
[92]
(a) Ochiai, M.; Hirobe, M.; Yoshimura, A.; Nishi, Y.; Miyamoto, K.; Shiro, M. Org. Lett. 2007, 9, 3335.
[92]
(b) Ochiai, M.; Nishi, Y.; Mori, T.; Tada, N.; Suefuji, T.; Frohn, H. J. J. Am. Chem. Soc. 2005, 127, 10460.
[93]
Zhao, Z.; To, A. J.; Murphy, G. K. Chem. Commun. (Cambridge, U. K.) 2019, 55, 14821.
[94]
Shang, X.-X.; Vu, H.-M.; Li, X.-Q. Synthesis 2018, 50, 377.
[95]
(a) Fittig, R. Justus Liebigs Ann. Chem. 1860, 114, 54.
[95]
(b) Meerwein, H. Justus Liebigs Ann. Chem. 1914, 405, 129.
[96]
(a) Guérard, K. C.; Chapelle, C.; Giroux, M.-A.; Sabot, C.; Beaulieu, M.-A.; Achache, N.; Canesi, S. Org. Lett. 2009, 11, 4756.
[96]
(b) Guérard, K. C.; Guérinot, A.; Bouchard-Aubin, C.; Ménard, M.-A.; Lepage, M.; Beaulieu, M. A.; Canesi, S. J. Org. Chem. 2012, 77, 2121.
[97]
(a) Beaulieu, M.-A.; Sabot, C.; Achache, N.; Guérard, K. C.; Canesi, S. Chem. Eur. J. 2010, 16, 11224.
[97]
(b) Beaulieu, M.-A.; Guérard, K. C.; Maertens, G.; Sabot, C.; Canesi, S. J. Org. Chem. 2011, 76, 9460.
[98]
Desjardins, S.; Maertens, G.; Canesi, S. Org. Lett. 2014, 16, 4928.
[99]
(a) Parham, M. E.; Loudon, G. M. Biochem. Biophys. Res. Commun. 1978, 80, 1.
[99]
(b) Radhakrishna, A. S.; Parham, M. E.; Riggs, R. M.; Loudon, G. M. J. Org. Chem. 1979, 44, 1746.
[99]
(c) Waki, M.; Kitajima, Y.; Izumiya, N. Synthesis 1981, 266.
[99]
(d) Pallai, P.; Goodman, M. J. Chem. Soc., Chem. Commun. 1982, 280.
[99]
(e) Loudon, G. M.; Radhakrishna, A. S.; Almond, M. R.; Blodgett, J. K.; Boutin, R. H. J. Org. Chem. 1984, 49, 4272.
[99]
(f) Almond, M. R.; Stimmel, J. B.; Thompson, E. A.; Loudon, G. M. Org. Synth. 2003, 66, 132.
[99]
(g) Erdelmeier, I.; Tailhan-Lomont, C.; Yadan, J.-C. J. Org. Chem. 2000, 65, 8152.
[99]
(h) Davis, M. C.; Stasko, D.; Chapman, R. D. Synth. Commun. 2003, 33, 2677.
[100]
(a) Radhakrishna, A. S.; Rao, C. G.; Varma, R. K.; Singh, B. B.; Bhatnagar, S. P. Synthesis 1983, 538.
[100]
(b) Della, E. W.; Kasum, B.; Kirkbride, K. P. J. Am. Chem. Soc. 1987, 109, 2746.
[101]
(a) Lazbin, I. M.; Koser, G. F. J. Org. Chem. 1986, 51, 2669.
[101]
(b) Lazbin, I. M.; Koser, G. F. J. Org. Chem. 1987, 52, 476.
[101]
(c) Vasudevan, A.; Koser, G. F. J. Org. Chem. 1988, 53, 5158.
[101]
(d) Moriarty, R. M.; Khosrowshahi, J. S.; Awasthi, A. K.; Penmasta, R. Synth. Commun. 1988, 18, 1179.
[102]
(a) Zhang, L.; Chung, J. C.; Costello, T. D.; Valvis, I.; Ma, P.; Kauffman, S.; Ward, R. J. Org. Chem. 1997, 62, 2466.
[102]
(b) Zhang, L.; Kauffman, G. S.; Pesti, J. A.; Yin, J. J. Org. Chem. 1997, 62, 6918.
[102]
(c) Kimishima, A.; Umihara, H.; Mizoguchi, A.; Yokoshima, S.; Fukuyama, T. Org. Lett. 2014, 16, 6244.
[103]
(a) Tohma, H.; Maruyama, A.; Maeda, A.; Maegawa, T.; Dohi, T.; Shiro, M.; Morita, T.; Kita, Y. Angew. Chem., Int. Ed. 2004, 43, 3595.
[103]
(b) Yusubov, M. S.; Funk, T. V.; Chi, K.-W.; Cha, E.-H.; Kim, G. H.; Kirschning, A.; Zhdankin, V. V. J. Org. Chem. 2008, 73, 295.
[104]
(a) Miyamoto, K.; Sakai, Y.; Goda, S.; Ochiai, M. Chem. Commun. 2012, 48, 982.
[104]
(b) Moriyama, K.; Ishida, K.; Togo, H. Org. Lett. 2012, 14, 946.
[105]
Yamada, K.; Urakawa, H.; Oku, H.; Katakai, R. J. Pept. Res. 2004, 64, 43.
[106]
(a) Moriarty, R. M.; Chany, C. J.; Vaid, R. K.; Prakash, O.; Tuladhar, S. M. J. Org. Chem. 1993, 58, 2478.
[106]
(b) Song, H.; Chen, W.; Wang, Y.; Qin, Y. Synth. Commun. 2005, 35, 2735.
[106]
(c) Satoh, N.; Akiba, T.; Yokoshima, S.; Fukuyama, T. Angew. Chem., Int. Ed. 2007, 46, 5734.
[107]
(a) Zagulyaeva, A. A.; Banek, C. T.; Yusubov, M. S.; Zhdankin, V. V. Org. Lett. 2010, 12, 4644.
[107]
(b) Yoshimura, A.; Middleton, K. R.; Luedtke, M. W.; Zhu, C.; Zhdankin, V. V. J. Org. Chem. 2012, 77, 11399.
[107]
(c) Miyamoto, K.; Yamashita, J.; Narita, S.; Sakai, Y.; Hirano, K.; Saito, T.; Wang, C.; Ochiai, M.; Uchiyama, M. Chem. Commun. (Cambridge, U. K.) 2017, 53, 9781.
[108]
Yoshimura, A.; Luedtke, M. W.; Zhdankin, V. V. J. Org. Chem. 2012, 77, 2087.
[109]
Liu, P.; Wang, Z.; Hu, X. Eur. J. Org. Chem. 2012, 2012, 1994.
[110]
(a) Landsberg, D.; Kalesse, M. Synlett 2010, 1104.
[110]
(b) Reddy, N. V.; Kumar, P. S.; Reddy, P. S.; Kantam, M. L.; Reddy, K. R. New J. Chem. 2015, 39, 805.
[111]
Wang, X.; Yang, P.; Hu, B.; Zhang, Q.; Li, D. J. Org. Chem. 2021, 86, 2820.
[112]
Prakash, O.; Batra, H.; Kaur, H.; Sharma, P. K.; Sharma, V.; Singh, S. P.; Moriarty, R. M. Synthesis 2001, 541.
[113]
Hernández, E.; Vélez, J. M.; Vlaar, C. P. Tetrahedron Lett. 2007, 48, 8972.
[114]
Angelici, G.; Contaldi, S.; Lynn Green, S.; Tomasini, C. Org. Biomol. Chem. 2008, 6, 1849.
[115]
(a) Okamoto, N.; Miwa, Y.; Minami, H.; Takeda, K.; Yanada, R. Angew. Chem., Int. Ed. 2009, 48, 9693.
[115]
(b) Okamoto, N.; Takeda, K.; Yanada, R. J. Org. Chem. 2010, 75, 7615.
[116]
Okamoto, N.; Takeda, K.; Ishikura, M.; Yanada, R. J. Org. Chem. 2011, 76, 9139.
[117]
Bhalerao, D. S.; Mahajan, U. S.; Chaudhari, K. H.; Akamanchi, K. G. J. Org. Chem. 2007, 72, 662.
[118]
Bellale, E. V.; Bhalerao, D. S.; Akamanchi, K. G. J. Org. Chem. 2008, 73, 9473.
[119]
(a) Magnus, P.; Lacour, J. J. Am. Chem. Soc. 1992, 114, 767.
[119]
(b) Magnus, P.; Lacour, J.; Evans, P. A.; Roe, M. B.; Hulme, C. J. Am. Chem. Soc. 1996, 118, 3406.
[119]
(c) Magnus, P.; Roe, M. B. Tetrahedron Lett. 1996, 37, 303.
[119]
(d) Magnus, P.; Lacour, J.; Evans, P. A.; Rigollier, P.; Tobler, H. J. Am. Chem. Soc. 1998, 120, 12486.
[119]
(e) Zhdankin, V. V.; Krasutsky, A. P.; Kuehl, C. J.; Simonsen, A. J.; Woodward, J. K.; Mismash, B.; Bolz, J. T. J. Am. Chem. Soc. 1996, 118, 5192.
[120]
Pedersen, C. M.; Marinescu, L. G.; Bols, M. Org. Biomol. Chem. 2005, 3, 816.
[121]
Li, X.-Q.; Zhao, X.-F.; Zhang, C. Synthesis 2008, 2589.
[122]
Li, X.-Q.; Wang, W.-K.; Zhang, C. Adv. Synth. Catal. 2009, 351, 2342.
[123]
Zhang, C.; Wang, W.-K.; He, T. Synthesis 2012, 44, 3006.
[124]
Kita, Y.; Tohma, H.; Takada, T.; Mitoh, S.; Fujita, S.; Gyoten, M. Synlett 1994, 427.
[125]
Chen, D.-J.; Chen, Z.-C. Tetrahedron Lett. 2000, 41, 7361.
[126]
(a) Ganguly, N. C.; Mondal, P. Synthesis 2010, 3705.
[126]
(b) Xu, F.; Wang, N.-G.; Tian, Y.-P.; Chen, Y.-M.; Liu, W.-C. Synth. Commun. 2012, 42, 3532.
[127]
(a) Zhang, X.; Huang, R.; Marrot, J.; Coeffard, V.; Xiong, Y. Tetrahedron 2015, 71, 700.
[127]
(b) Oishi, R.; Segi, K.; Hamamoto, H.; Nakamura, A.; Maegawa, T.; Miki, Y. Synlett 2018, 29, 1465.
[127]
(c) Maegawa, T.; Oishi, R.; Maekawa, A.; Segi, K.; Hamamoto, H.; Nakamura, A.; Miki, Y. Synlett 2022, 54, 4095.
[128]
Ramsden, A. C.; Rose, L. H. J. Chem. Soc., 1997, 2319.
[129]
Zhao, Z.; Peng, Z.; Zhao, Y.; Liu, H.; Li, C.; Zhao, J. J. Org. Chem. 2017, 82, 11848.
[130]
Murai, K.; Kobayashi, T.; Miyoshi, M.; Fujioka, H. Org. Lett. 2018, 20, 2333.
[131]
Yamakoshi, W.; Arisawa, M.; Murai, K. Org. Lett. 2019, 21, 3023.
[132]
Patel, O. P. S.; Jaspal, S.; Shinde, V. N.; Nandwana, N. K.; Rangan, K.; Kumar, A. J. Org. Chem. 2020, 85, 7309.
[133]
(a) Bhattacherjee, D. ;, Shaifali; Kumar, A.; Sharma, A.; Purohit, R.; Das, P. Org. Biomol. Chem. 2020, 18, 745.
[133]
(b) Bera, S. K.; Alam, M. T.; Mal, P. J. Org. Chem. 2019, 84, 12009.
[134]
Liang, D.; He, Y.; Liu, L.; Zhu, Q. Org. Lett. 2013, 15, 3476.
[135]
Liu, Q.; Zhang, X.; He, Y.; Hussain, M. I.; Hu, W.; Xiong, Y.; Zhu, X. Tetrahedron 2016, 72, 5749.
[136]
Guo, T.; Huang, F.; Jiang, Q.; Yu, Z. Chem. Eur. J. 2018, 24, 14368.
[137]
(a) Ren, J.; Du, F.-H.; Jia, M.-C.; Hu, Z.-N.; Chen, Z.; Zhang, C. Angew. Chem., Int. Ed. 2021, 60, 24171.
[137]
(b) Zhou, T.; Luo, F.-X.; Yang, M.-Y.; Shi, Z.-J. J. Am. Chem. Soc. 2015, 137, 14586.
[138]
Shang, S.; Zhang-Negrerie, D.; Du, Y.; Zhao, K. Angew. Chem., Int. Ed. 2014, 53, 6216.
[139]
(a) Kelley, B. T.; Walters, J. C.; Wengryniuk, S. E. Org. Lett. 2016, 18, 1896.
[139]
(b) Walters, J. C.; Tierno, A. F.; Dubin, A. H.; Wengryniuk, S. E. Eur. J. Org. Chem. 2018, 2018, 1460.
[140]
Kinouchi, H.; Sugimoto, K.; Yamaoka, Y.; Takikawa, H.; Takasu, K. J. Org. Chem. 2021, 86, 12615.
[141]
Ulmer, A.; Stodulski, M.; Kohlhepp, S. V.; Patzelt, C.; P?thig, A.; Bettray, W.; Gulder, T. Chem. Eur. J. 2015, 21, 1444.
[142]
(a) Feldman, K. S.; Wrobleski, M. L. J. Org. Chem. 2000, 65, 8659.
[142]
(b) Feldman, K. S.; Wrobleski, M. L. Org. Lett. 2000, 2, 2603.
[143]
Kong, W.; Casimiro, M.; Merino, E.; Nevado, C. J. Am. Chem. Soc. 2013, 135, 14480.
[144]
Kong, W.; Merino, E.; Nevado, C. Angew. Chem., Int. Ed. 2014, 53, 5078.
[145]
(a) Fuentes, N.; Kong, W.; Fernández-Sánchez, L.; Merino, E.; Nevado, C. J. Am. Chem. Soc. 2015, 137, 964.
[145]
(b) Kong, W.; Fuentes, N.; García-Domínguez, A.; Merino, E.; Nevado, C. Angew. Chem., Int. Ed. 2015, 54, 2487.
[145]
(c) Li, L.; Li, Z.-L.; Wang, F.-L.; Guo, Z.; Cheng, Y.-F.; Wang, N.; Dong, X.-W.; Fang, C.; Liu, J.; Hou, C.; Tan, B.; Liu, X.-Y. Nat. Commun. 2016, 7, 13852.
[146]
Jacquemot, G.; Canesi, S. J. Org. Chem. 2012, 77, 7588.
[147]
Norrby, P.-O.; Petersen, T. B.; Bielawski, M.; Olofsson, B. Chem. Eur. J. 2010, 16, 8251.
[148]
Moriyama, K.; Ishida, K.; Togo, H. Chem. Commun. 2015, 51, 2273.
[149]
Takaku, M.; Hayasi, Y.; Nozaki, H. Tetrahedron 1970, 26, 1243.
[150]
(a) Kappe, T.; Korbuly, G.; Stadlbauer, W. Chem. Ber. 1978, 111, 3857.
[150]
(b) Spyroudis, S.; Tarantili, P. J. Org. Chem. 1993, 58, 4885.
[150]
(c) Prakash, O.; Kumar, D.; Saini, R. K.; Singh, S. P. Tetrahedron Lett. 1994, 35, 4211.
[150]
(d) Moriarty, R. M.; Tyagi, S.; Ivanov, D.; Constantinescu, M. J. Am. Chem. Soc. 2008, 130, 7564.
[150]
(e) Jin, Y. L.; Kim, S.; Kim, Y. S.; Kim, S.-A.; Kim, H. S. Tetrahedron Lett. 2008, 49, 6835.
[151]
Georgantji, A.; Spyroudis, S. Tetrahedron Lett. 1995, 36, 443.
[152]
(a) Papoutsis, I.; Spyroudis, S.; Varvoglis, A. Tetrahedron Lett. 1996, 37, 913.
[152]
(b) Papoutsis, I.; Spyroudis, S.; Varvoglis, A. J. Heterocycl. Chem. 1996, 33, 579.
[152]
(c) Papoutsi, I.; Spyroudis, S.; Varvoglis, A.; Raptopoulou, C. P. Tetrahedron 1997, 53, 6097.
[153]
Chen, H.; Han, J.; Wang, L. Angew. Chem., Int. Ed. 2018, 57, 1.
[154]
Chen, H.; Wang, L.; Han, J. Org. Lett. 2020, 22, 3581.
[155]
Linde, E.; Bulfield, D.; Kervefors, G.; Purkait, N.; Olofsson, B. Chem 2022, 8, 850.
[156]
Lee, K.; Kim, D. Y.; Oh, D. Y. Tetrahedron Lett. 1988, 29, 667.
[157]
(a) Ochiai, M.; Ito, T.; Takaoka, Y.; Masaki, Y. J. Am. Chem. Soc. 1991, 113, 1319.
[157]
(b) Ochiai, M.; Ito, T.; Masaki, Y. J. Chem. Soc., Chem. Commun. 1992, 15.
[157]
(c) Ochiai, M.; Ito, T. J. Org. Chem. 1995, 60, 2274.
[157]
(d) Ochiai, M.; Kida, M.; Okuyama, T. Tetrahedron Lett. 1998, 39, 6207.
[158]
Gately, D. A.; Luther, T. A.; Norton, J. R.; Miller, M. M.; Anderson, O. P. J. Org. Chem. 1992, 57, 6496.
[159]
(a) Khatri, H. R.; Zhu, J. Chem. Eur. J. 2012, 18, 12232.
[159]
(b) Nguyen, H.; Khatri, H. R.; Zhu, J. Tetrahedron Lett. 2013, 54, 5464.
[159]
(c) Khatri, H. R.; Nguyen, H.; Dunaway, J. K.; Zhu, J. Front. Chem. Sci. Eng. 2015, 9, 359.
[160]
(a) Chen, W. W.; Cunillera, A.; Chen, D.; Lethu, S.; López de Moragas, A.; Zhu, J.; Solà, M.; Cuenca, A. B.; Shafir, A. Angew. Chem., Int. Ed. 2020, 59, 20201.
[160]
(b) Izquierdo, S.; Bouvet, S.; Wu, Y.; Molina, S.; Shafir, A. Chem. Eur. J. 2018, 24, 15517.
[161]
Wu, Y.; Bouvet, S.; Izquierdo, S.; Shafir, A. Angew. Chem., Int. Ed. 2019, 58, 2617.
[162]
(a) Tian, J.; Luo, F.; Zhang, C.; Huang, X.; Zhang, Y.; Zhang, L.; Kong, L.; Hu, X.; Wang, Z.-X.; Peng, B. Angew. Chem., Int. Ed. 2018, 57, 9078.
[162]
(b) Zhao, W.; Huang, X.; Zhan, Y.; Zhang, Q.; Li, D.; Zhang, Y.; Kong, L.; Peng, B. Angew. Chem., Int. Ed. 2019, 58, 17210.
[163]
(a) Jia, Z.; Gálvez, E.; Sebastián, R. M.; Pleixats, R.; álvarez- Larena, á.; Martin, E.; Vallribera, A.; Shafir, A. Angew. Chem., Int. Ed. 2014, 53, 11298.
[163]
(b) Wu, Y.; Arenas, I.; Broomfield, L. M.; Martin, E.; Shafir, A. Chem. Eur. J. 2015, 21, 18779.
[164]
(a) Hori, M.; Guo, J.-D.; Yanagi, T.; Nogi, K.; Sasamori, T.; Yorimitsu, H. Angew. Chem., Int. Ed. 2018, 57, 4663.
[164]
(b) Reddy, G. C. Tetrahedron Lett. 1995, 36, 1001.
[164]
(c) Van De Water, R. W.; Hoarau, C.; Pettus, T. R. R. Tetrahedron Lett. 2003, 44, 5109.
[164]
(d) Zhu, J.; Germain, A. R.; Porco, J. A. Angew. Chem., Int. Ed. 2004, 43, 1239.
[165]
Tian, J.; Luo, F.; Zhang, Q.; Liang, Y.; Li, D.; Zhan, Y.; Kong, L.; Wang, Z.-X.; Peng, B. J. Am. Chem. Soc. 2020, 142, 6884.
[166]
Huang, X.; Zhang, Y.; Zhang, C.; Zhang, L.; Xu, Y.; Kong, L.; Wang, Z.-X.; Peng, B. Angew. Chem., Int. Ed. 2019, 58, 5956.
[167]
Sousa E Silva, F. C.; Van, N. T.; Wengryniuk, S. E. J. Am. Chem. Soc. 2020, 142, 64.
[168]
Izquierdo, S.; Essafi, S.; del Rosal, I.; Vidossich, P.; Pleixats, R.; Vallribera, A.; Ujaque, G.; Lledós, A.; Shafir, A. J. Am. Chem. Soc. 2016, 138, 12747.
[169]
Noorollah, J.; Im, H.; Siddiqi, F.; Singh, N.; Spatola, N. R.; Chaudhry, A.; Jones, T. J.; Hyatt, I. F. D. Eur. J. Org. Chem. 2020, 2020, 2302.
[170]
Gao, H.; Xu, Q.-L.; Keene, C.; Kürti, L. Chem. Eur. J. 2014, 20, 8883.
[171]
Miyagi, K.; Moriyama, K.; Togo, H. Heterocycles 2014, 89, 2122.
[172]
Ghosh, R.; Stridfeldt, E.; Olofsson, B. Chem. Eur. J. 2014, 20, 8888.
[173]
Tomakinian, T.; Kouklovsky, C.; Vincent, G. Synlett 2015, 26, 1269.
[174]
Shi, W.-M.; Li, X.-H.; Liang, C.; Mo, D.-L. Adv. Synth. Catal. 2017, 359, 4129.
[175]
Ma, X.-P.; Li, K.; Wu, S.-Y.; Liang, C.; Su, G.-F.; Mo, D.-L. Green Chem. 2017, 19, 5761.
[176]
(a) Shi, W.-M.; Ma, X.-P.; Pan, C.-X.; Su, G.-F.; Mo, D.-L. J. Org. Chem. 2015, 80, 11175.
[176]
(b) Wang, Z.-X.; Shi, W.-M.; Bi, H.-Y.; Li, X.-H.; Su, G.-F.; Mo, D.-L. J. Org. Chem. 2016, 81, 8014.
[177]
(a) Yuan, H.; Du, Y.; Liu, F.; Guo, L.; Sun, Q.; Feng, L.; Gao, H. Chem. Commun. 2020, 56, 8226.
[177]
(b) Liu, F.; Wang, M.; Qu, J.; Lu, H.; Gao, H. Org. Biomol. Chem. 2021, 19, 7246.
[178]
(a) Zhang, J.-W.; Qi, L.-W.; Li, S.; Xiang, S.-H.; Tan, B. Chin. J. Chem. 2020, 38, 1503.
[178]
(b) Zhang, J.-W.; Xiang, S.-H.; Li, S.; Tan, B. Molecules 2021, 26.
[179]
(a) Li, M.; Wang, J.-H.; Li, W.; Wen, L.-R. Org. Lett. 2018, 20, 7694.
[179]
(b) Li, M.; Wang, J.-H.; Li, W.; Lin, C.-D.; Zhang, L.-B.; Wen, L.-R. J. Org. Chem. 2019, 84, 8523.
[179]
(c) Li, M.; Li, W.; Lin, C.-D.; Wang, J.-H.; Wen, L.-R. J. Org. Chem. 2019, 84, 6904.
[180]
Yuan, H.; Guo, L.; Liu, F.; Miao, Z.; Feng, L.; Gao, H. ACS Catal. 2019, 9, 3906.
[181]
(a) Shibuya, M.; Ito, S.; Takahashi, M.; Iwabuchi, Y. Org. Lett. 2004, 6, 4303.
[181]
(b) Babler, J. H.; Coghlan, M. J. Synth. Commun. 1976, 6, 469.
[181]
(c) Dauben, W. G.; Michno, D. M. J. Org. Chem. 1977, 42, 682.
[181]
(d) Sundararaman, P.; Herz, W. J. Org. Chem. 1977, 42, 813.
[181]
(e) Shibuya, M.; Tomizawa, M.; Iwabuchi, Y. J. Org. Chem. 2008, 73, 4750.
[181]
(f) Luzzio, F. A. Tetrahedron 2012, 68, 5323.
[181]
(g) Shibuya, M.; Tomizawa, M.; Iwabuchi, Y. Org. Lett. 2008, 10, 4715.
[182]
(a) Vatèle, J.-M. Synlett 2008, 1785.
[182]
(b) Vatèle, J.-M. Tetrahedron 2010, 66, 904.
[183]
Uyanik, M.; Fukatsu, R.; Ishihara, K. Org. Lett. 2009, 11, 3470.
[184]
Huang, L.-L.; Lin, P.-P.; Li, Y.-X.; Feng, S.-X.; Tu, F.-H.; Yang, S.; Zhao, G.-Y.; Huang, Z.-S.; Wang, H.; Li, Q. Org. Lett. 2022, 24, 3389.
[185]
Strick, B. F.; Mundal, D. A.; Thomson, R. J. J. Am. Chem. Soc. 2011, 133, 14252.
[186]
(a) Peng, J.; Chen, C.; Wang, Y.; Lou, Z.; Li, M.; Xi, C.; Chen, H. Angew. Chem., Int. Ed. 2013, 52, 7574.
[186]
(b) Wang, Y.; Li, M.; Wen, L.; Jing, P.; Su, X.; Chen, C. Org. Biomol. Chem. 2015, 13, 751.
[187]
Chen, W. W.; Fernández, N. P.; Baranda, M. D.; Cunillera, A.; Rodríguez, L. G.; Shafir, A.; Cuenca, A. B. Chem. Sci. 2021, 12, 10514.
Outlines

/