REVIEWS

Recent Advances of the Atherton-Todd Reaction

  • Siqiang Fang ,
  • Zanjiao Liu ,
  • Tianli Wang
Expand
  • a Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064
    b Beijing National Laboratory for Molecular Sciences, Beijing 100190
* Corresponding author. E-mail:

Received date: 2022-10-26

  Revised date: 2022-12-05

  Online published: 2022-12-21

Supported by

National Natural Science Foundation of China(22222109); National Natural Science Foundation of China(21971165); National Natural Science Foundation of China(21921002); National Key R&D Program of China(2018YFA0903500); Beijing National Laboratory for Molecular Sciences(BNLMS202101); Fundamental Research Funds for the Central Universities and the Fundamental Research Funds from Sichuan University(2020SCUNL108)

Abstract

Phosphoramides or phosphates and their derivatives are a very important class of phosphorus-containing organic molecules, which are widely applied in medicinal chemistry, material chemistry and organic catalysis. As one of the most effective methods towards constructing phosphorus compounds, the Atherton-Todd reaction involves in situ halogenation of P(O)-H molecules with tetrachloromethane to generate the key intermediates of phosphoryl chlorides in the presence of bases, which subsequently react with amines or alcohols to form the corresponding phosphoramide or phosphate products. In recent years, this reaction has been widely explored by synthetic chemists due to its ease of operation, high atom economy, broad substrate versatility, and ease of incorporation of phosphorus units into active structural fragments. The research progress of the Atherton-Todd reaction and its application in organic synthesis in recent decades are summarized, and a brief outlook on the current research challenges is put forward, hoping to provide reference and thinking for the further development of the Atherton-Todd reaction.

Cite this article

Siqiang Fang , Zanjiao Liu , Tianli Wang . Recent Advances of the Atherton-Todd Reaction[J]. Chinese Journal of Organic Chemistry, 2023 , 43(3) : 1069 -1083 . DOI: 10.6023/cjoc202210032

References

[1]
Kannan, P.; Kishore, K. Polymer 1992, 33, 418.
[2]
Orsini, F.; Sello, G.; Sisti, M. Curr. Med. Chem. 2010, 17, 264.
[3]
Joachimiak, ?.; B?a?ewska, K. M. J. Med. Chem. 2018, 61, 8536.
[4]
Tang, W.; Zhang, X. Chem. Rev. 2003, 103, 3029.
[5]
Dutartre, M.; Bayardon, J.; Jugé, S. Chem. Soc. Rev. 2016, 45, 5771.
[6]
Kiss, N. Z.; Keglevich, G. Curr. Org. Chem. 2014, 18, 2673.
[7]
Atherton, F. R.; Openshaw, H. T.; Todd, A. R. J. Chem. Soc. 1945, 660.
[8]
Atherton, F. R.; Todd, A. R. J. Chem. Soc. 1947, 674.
[9]
Cao, S.; Zhao, Y. Sci. China: Chem. 2015, 45, 283.
[10]
Le Corre, S. S.; Berchel, M.; Couthon-Gourvès, H.; Haelters, J.-P.; Jaffrès. P.-A. Beilstein J. Org. Chem. 2014, 10, 1166.
[11]
Georgiev, E.; Roundhill, D. M.; Troev, K. Inorg. Chem. 1992, 31, 1965.
[12]
Steinberg, G. M. J. Org. Chem. 1950, 637.
[13]
Krutikov, V. I.; Erkin, A. V.; Krutikova, V. V. Russ. J. Gen. Chem. 2012, 82, 822.
[14]
Kong, A.; Engel, R. Bull. Chem. Soc. Jpn. 1985, 58, 3671.
[15]
Troev, K.; Kirilov, E. M. G.; Roundhill, D. M. Bull. Chem. Soc. Jpn. 1990, 63, 1284.
[16]
Georgiev, E. M.; Kaneti, J.; Troev, K.; Roundhill, D. M. J. Am. Chem. Soc. 1993, 115, 10964.
[17]
Liu, L.; Li, G.; Zeng, X.; Fu, L.; Cao, R. Heteroat. Chem. 1996, 7, 131.
[18]
Ashmus, R. A.; Lowary, T. L. Org. Lett. 2014, 16, 2518.
[19]
Tan, Y.; Han, Y.-P.; Zhang, Y.; Zhang, H.-Y.; Zhao, J.; Yang, S.-D. J. Org. Chem. 2022, 87, 3254.
[20]
Brands, K. M. J.; Wiedbrauk, K.; Williams, J. M.; Dolling, U.-H.; Reider, P. J. Tetrahedron Lett 1998, 39, 9583.
[21]
Dhineshkumar, J.; Prabhu, K. R. Org. Lett. 2013, 15, 6062.
[22]
Dar, B. A.; Dangroo, N. A.; Gupta, A.; Wali, A.; Khuroo, M. A.; Vishwakarma, R. A.; Singh, B. Tetrahedron Lett 2014, 55, 1544.
[23]
Anitha, T.; Ashalu, K. C.; Sandeep, M.; Mohd, A.; Wencel-Delord, J.; Colobert, F.; Reddy, K. R. Eur. J. Org. Chem. 2019, 2019, 7463.
[24]
Wang, X.; Ou, Y.; Peng, Z.; Yu, G.; Huang, Y.; Li, X.; Huo, Y.; Chen, Q. J. Org. Chem. 2019, 84, 14949.
[25]
Tan, C.; Liu, X.; Jia, H.; Zhao, X.; Chen, J.; Wang, Z.; Tan, J. Chem.-Eur. J. 2020, 26, 881.
[26]
Chen, Q.; Zeng, J.; Yan, X.; Huang, Y.; Wen, C.; Liu, X.; Zhang, K. J. Org. Chem. 2016, 81, 10043.
[27]
Kaboudin, B.; Donyavi, A.; Kazemi, F. Synthesis 2018, 50, 170.
[28]
Wang, Y.; Qian, P.; Su, J.-H.; Li, Y.; Bi, M.; Zha, Z.; Wang, Z. Green Chem. 2017, 19, 4769.
[29]
Li, Q.-Y.; Swaroop, T. R.; Hou, C.; Wang, Z.-Q. Pan, Y.-M.; Tang, H.-T. Adv. Synth. Catal. 2019, 361, 1761.
[30]
Deng, L.; Wang, Y.; Mei, H. Pan, Y.; Han, J. J. Org. Chem. 2019, 84, 949.
[31]
Dong, X.; Wang, R.; Jin, W.; Liu, C. Org. Lett. 2020, 22, 3062.
[32]
Li, Y.; Yang, Q.; Yang, L.; Lei, N.; Zheng, K. Chem. Commun. 2019, 55, 4981.
[33]
Wang, P.; Tang, S.; Huang, P.; Lei, A. Angew. Chem., Int. Ed. 2017, 56, 3009.
[34]
Huang, P.; Wang, P.; Tang, S.; Fu, Z.; Lei, A. Angew. Chem., Int. Ed. 2018, 57, 8115.
[35]
Li, C.-Y.; Liu, Y.-C.; Li, Y.-X.; Reddy, D. M.; Lee, C.-F. Org. Lett. 2019, 21, 7833.
[36]
Jin, X.; Yamaguchi, K.; Mizuno, N. Org. Lett. 2013, 15, 418.
[37]
Fraser, J.; Wilson, L. J.; Blundell, R. K.; Hayes, C. J. Chem. Commun. 2013, 49, 8919.
[38]
Zhou, Y.; Yin, S.; Gao, Y.; Zhao, Y.; Goto, M.; Han L.-B. Angew. Chem., Int. Ed. 2010, 49, 6852.
[39]
Li, C.; Chen, T.; Han, L.-B. Dalton Trans. 2016, 45, 14893.
[40]
Zhu, Y.; Chen, T.; Li, S.; Shimada, S.; Han, L.-B. J. Am. Chem. Soc. 2016, 138, 5825.
[41]
Xue, J.-W.; Zeng, M.; Zhang, S.; Chen, Z.; Yin, G. J. Org. Chem. 2019, 84, 4179.
[42]
Zhang, H.; Zhan, Z.; Lin, Y.; Shi, Y.; Li, G.; Wang, Q.; Deng, Y.; Hai, L.; Wu, Y. Org. Chem. Front. 2018, 5, 1416.
[43]
Pitre, S. P.; McTiernan, C. D.; Ismaili, H.; Scaiano, J. C. J. Am. Chem. Soc. 2013, 135, 13286.
[44]
Sun, J.-G.; Yang, H.; Li, P.; Zhang, B. Org. Lett. 2016, 18, 5114.
[45]
Fu, Y.; Duan, F.; Du, Z. Asian J. Org. Chem. 2021, 10, 1071.
[46]
Song, S.; Zhang, Y.; Yeerlan, A.; Zhu, B.; Liu, J.; Jiao, N. Angew. Chem., Int. Ed. 2017, 56, 2487.
[47]
Ou, Y.; Huang, Y.; He, Z.; Yu, G.; Huo, Y.; Li, X.; Gao, Y.; Chen, Q. Chem. Commun. 2020, 56, 1357.
[48]
Handoko.; Benslimane, Z.; Arora, P. S. Org. Lett. 2020, 22, 5811.
[49]
Yu, X.; Zhang, S.; Jiang, Z.; Zhang, H.-S.; Wang, T. Eur. J. Org. Chem. 2020, 3110.
[50]
Reiff, L. P.; Aaron, H. S. J. Am. Chem. Soc. 1970, 92, 5275.
[51]
Stec, W.; Mikolajczyk, M. Tetrahedron 1973, 29, 539.
[52]
Wang, G.; Shen, R.; Xu, Q.; Goto, M.; Zhao, Y.; Han, L-B. J. Org. Chem. 2010, 75, 3890.
[53]
Zhou, Y.; Wang, G.; Saga, Y.; Shen, R.; Goto, M.; Zhao, Y.; Han, L.-B. J. Org. Chem. 2010, 75, 7924.
[54]
Xiong, B.; Zhou, Y.; Zhao, C.; Goto, M.; Yin, S.-F.; Han, L.-B. Tetrahedron 2013, 69, 9373.
[55]
Cao, S.; Guo, Y.; Wang, J.; Qi, L.; Gao, P.; Zhao, H.; Zhao, Y. Tetrahedron Lett 2012, 53, 6302.
[56]
Cao, S.; Gao P, Guo, Y.; Zhao, H.; Wang, J.; Liu, Y.; Zhao, Y. J. Org. Chem. 2013, 78, 11283.
[57]
Kenner, G. W.; Williams, N. R. J. Chem. Soc. 1955, 522.
[58]
Lu, D.; Meng, Z.; Thakur, G. A.; Fan, P.; Steed, J.; Tartal, C. L.; Hurst, D. P.; Reggio, P. H.; Deschamps, J. R.; Parrish, D. A.; George, C.; J?rbe, T. U. C.; Lamb, R. J.; Makriyannis, A. J. Med. Chem. 2005, 48, 4576.
[59]
Chopa, A. B.; Lockhart, M. T.; Dorn, V. B. Organometallics 2002, 21, 1425.
[60]
Carsten, B.; He, F.; Son, H. J.; Xu, T.; Yu, L. Chem. Rev. 2011, 111, 1493.
[61]
Chen, H.; Huang, Z.; Hu, X.; Tang, G.; Xu, P.; Zhao, Y.; Cheng, C.-H. J. Org. Chem. 2011, 76, 2338.
[62]
Dutartre, M.; Bayardon, J.; Juge, S. Chem. Soc. Rev. 2016, 45, 5771.
[63]
Ni, H.; Chan, W.-L.; Lu, Y. Chem. Rev. 2018, 118, 9344.
[64]
Melvin, L. S. Tetrahedron Lett. 1981, 22, 3375.
[65]
Ellman, J. A.; Owens, T. D.; Tang, T. P. Acc. Chem. Res. 2002, 35, 984.
[66]
Mohd, A.; Anitha, T.; Reddy, K. R.; Wencel-Delord, J.; Colobert, F. Eur. J. Org. Chem. 2019, 7836.
[67]
Gatineau, D.; Nguyen, D. H.; Hérault, D.; Vanthuyne, N.; Leclaire, J.; Giordano, L.; Buono, G. J. Org. Chem. 2015, 80, 4132.
[68]
Fang, S.; Tan, J.-P.; Pan, J.; Zhang, H.; Chen, Y.; Ren, X.; Wang, T. Angew. Chem., Int. Ed. 2021, 60, 14921.
[69]
M?der, P.; Kattner, L. J. Med. Chem. 2020, 63, 14243.
[70]
Otocka, S.; Kwiatkowska, M.; Madalińska, L.; Kie?basiński, P. Chem. Rev. 2017, 117, 4147.
[71]
Fang, S.; Liu, Z.; Zhang, H.; Pan, J.; Chen, Y.; Ren, X.; Wang, T. ACS Catal. 2021, 11, 13902.
Outlines

/