Chinese Journal of Organic Chemistry ›› 2023, Vol. 43 ›› Issue (3): 1069-1083.DOI: 10.6023/cjoc202210032 Previous Articles Next Articles
Special Issue: 中国女科学家专辑
REVIEWS
收稿日期:
2022-10-26
修回日期:
2022-12-05
发布日期:
2022-12-21
通讯作者:
王天利
基金资助:
Siqiang Fanga, Zanjiao Liua, Tianli Wanga,b()
Received:
2022-10-26
Revised:
2022-12-05
Published:
2022-12-21
Contact:
Tianli Wang
Supported by:
Share
Siqiang Fang, Zanjiao Liu, Tianli Wang. Recent Advances of the Atherton-Todd Reaction[J]. Chinese Journal of Organic Chemistry, 2023, 43(3): 1069-1083.
[1] |
Kannan, P.; Kishore, K. Polymer 1992, 33, 418.
doi: 10.1016/0032-3861(92)91002-J |
[2] |
Orsini, F.; Sello, G.; Sisti, M. Curr. Med. Chem. 2010, 17, 264.
pmid: 20214568 |
[3] |
Joachimiak, Ł.; Błażewska, K. M. J. Med. Chem. 2018, 61, 8536.
doi: 10.1021/acs.jmedchem.8b00249 pmid: 29771523 |
[4] |
Tang, W.; Zhang, X. Chem. Rev. 2003, 103, 3029.
doi: 10.1021/cr020049i |
[5] |
Dutartre, M.; Bayardon, J.; Jugé, S. Chem. Soc. Rev. 2016, 45, 5771.
pmid: 27479243 |
[6] |
Kiss, N. Z.; Keglevich, G. Curr. Org. Chem. 2014, 18, 2673.
doi: 10.2174/1385272819666140829011741 |
[7] |
Atherton, F. R.; Openshaw, H. T.; Todd, A. R. J. Chem. Soc. 1945, 660.
|
[8] |
Atherton, F. R.; Todd, A. R. J. Chem. Soc. 1947, 674.
|
[9] |
Cao, S.; Zhao, Y. Sci. China: Chem. 2015, 45, 283.
|
[10] |
Le Corre, S. S.; Berchel, M.; Couthon-Gourvès, H.; Haelters, J.-P.; Jaffrès. P.-A. Beilstein J. Org. Chem. 2014, 10, 1166.
doi: 10.3762/bjoc.10.117 |
[11] |
Georgiev, E.; Roundhill, D. M.; Troev, K. Inorg. Chem. 1992, 31, 1965.
doi: 10.1021/ic00036a047 |
[12] |
Steinberg, G. M. J. Org. Chem. 1950, 637.
|
[13] |
Krutikov, V. I.; Erkin, A. V.; Krutikova, V. V. Russ. J. Gen. Chem. 2012, 82, 822.
doi: 10.1134/S1070363212050039 |
[14] |
Kong, A.; Engel, R. Bull. Chem. Soc. Jpn. 1985, 58, 3671.
doi: 10.1246/bcsj.58.3671 |
[15] |
Troev, K.; Kirilov, E. M. G.; Roundhill, D. M. Bull. Chem. Soc. Jpn. 1990, 63, 1284.
doi: 10.1246/bcsj.63.1284 |
[16] |
Georgiev, E. M.; Kaneti, J.; Troev, K.; Roundhill, D. M. J. Am. Chem. Soc. 1993, 115, 10964.
doi: 10.1021/ja00076a063 |
[17] |
Liu, L.; Li, G.; Zeng, X.; Fu, L.; Cao, R. Heteroat. Chem. 1996, 7, 131.
doi: 10.1002/(ISSN)1098-1071 |
[18] |
Ashmus, R. A.; Lowary, T. L. Org. Lett. 2014, 16, 2518.
doi: 10.1021/ol500894k pmid: 24783964 |
[19] |
Tan, Y.; Han, Y.-P.; Zhang, Y.; Zhang, H.-Y.; Zhao, J.; Yang, S.-D. J. Org. Chem. 2022, 87, 3254.
doi: 10.1021/acs.joc.1c02933 |
[20] |
Brands, K. M. J.; Wiedbrauk, K.; Williams, J. M.; Dolling, U.-H.; Reider, P. J. Tetrahedron Lett 1998, 39, 9583.
doi: 10.1016/S0040-4039(98)02300-4 |
[21] |
Dhineshkumar, J.; Prabhu, K. R. Org. Lett. 2013, 15, 6062.
doi: 10.1021/ol402956b pmid: 24219013 |
[22] |
Dar, B. A.; Dangroo, N. A.; Gupta, A.; Wali, A.; Khuroo, M. A.; Vishwakarma, R. A.; Singh, B. Tetrahedron Lett 2014, 55, 1544.
doi: 10.1016/j.tetlet.2014.01.064 |
[23] |
Anitha, T.; Ashalu, K. C.; Sandeep, M.; Mohd, A.; Wencel-Delord, J.; Colobert, F.; Reddy, K. R. Eur. J. Org. Chem. 2019, 2019, 7463.
doi: 10.1002/ejoc.201901362 |
[24] |
Wang, X.; Ou, Y.; Peng, Z.; Yu, G.; Huang, Y.; Li, X.; Huo, Y.; Chen, Q. J. Org. Chem. 2019, 84, 14949.
doi: 10.1021/acs.joc.9b02301 |
[25] |
Tan, C.; Liu, X.; Jia, H.; Zhao, X.; Chen, J.; Wang, Z.; Tan, J. Chem.-Eur. J. 2020, 26, 881.
doi: 10.1002/chem.201904237 pmid: 31625634 |
[26] |
Chen, Q.; Zeng, J.; Yan, X.; Huang, Y.; Wen, C.; Liu, X.; Zhang, K. J. Org. Chem. 2016, 81, 10043.
doi: 10.1021/acs.joc.6b01932 |
[27] |
Kaboudin, B.; Donyavi, A.; Kazemi, F. Synthesis 2018, 50, 170.
doi: 10.1055/s-0036-1589111 |
[28] |
Wang, Y.; Qian, P.; Su, J.-H.; Li, Y.; Bi, M.; Zha, Z.; Wang, Z. Green Chem. 2017, 19, 4769.
doi: 10.1039/C7GC01989K |
[29] |
Li, Q.-Y.; Swaroop, T. R.; Hou, C.; Wang, Z.-Q. Pan, Y.-M.; Tang, H.-T. Adv. Synth. Catal. 2019, 361, 1761.
doi: 10.1002/adsc.v361.8 |
[30] |
Deng, L.; Wang, Y.; Mei, H. Pan, Y.; Han, J. J. Org. Chem. 2019, 84, 949.
doi: 10.1021/acs.joc.8b02882 |
[31] |
Dong, X.; Wang, R.; Jin, W.; Liu, C. Org. Lett. 2020, 22, 3062.
doi: 10.1021/acs.orglett.0c00814 |
[32] |
Li, Y.; Yang, Q.; Yang, L.; Lei, N.; Zheng, K. Chem. Commun. 2019, 55, 4981.
doi: 10.1039/C9CC01378D |
[33] |
Wang, P.; Tang, S.; Huang, P.; Lei, A. Angew. Chem., Int. Ed. 2017, 56, 3009.
doi: 10.1002/anie.201700012 pmid: 28177563 |
[34] |
Huang, P.; Wang, P.; Tang, S.; Fu, Z.; Lei, A. Angew. Chem., Int. Ed. 2018, 57, 8115.
doi: 10.1002/anie.v57.27 |
[35] |
Li, C.-Y.; Liu, Y.-C.; Li, Y.-X.; Reddy, D. M.; Lee, C.-F. Org. Lett. 2019, 21, 7833.
doi: 10.1021/acs.orglett.9b02825 |
[36] |
Jin, X.; Yamaguchi, K.; Mizuno, N. Org. Lett. 2013, 15, 418.
doi: 10.1021/ol303420g |
[37] |
Fraser, J.; Wilson, L. J.; Blundell, R. K.; Hayes, C. J. Chem. Commun. 2013, 49, 8919.
doi: 10.1039/c3cc45680c |
[38] |
Zhou, Y.; Yin, S.; Gao, Y.; Zhao, Y.; Goto, M.; Han L.-B. Angew. Chem., Int. Ed. 2010, 49, 6852.
doi: 10.1002/anie.201003484 |
[39] |
Li, C.; Chen, T.; Han, L.-B. Dalton Trans. 2016, 45, 14893.
doi: 10.1039/C6DT02236G |
[40] |
Zhu, Y.; Chen, T.; Li, S.; Shimada, S.; Han, L.-B. J. Am. Chem. Soc. 2016, 138, 5825.
doi: 10.1021/jacs.6b03112 |
[41] |
Xue, J.-W.; Zeng, M.; Zhang, S.; Chen, Z.; Yin, G. J. Org. Chem. 2019, 84, 4179.
doi: 10.1021/acs.joc.9b00194 |
[42] |
Zhang, H.; Zhan, Z.; Lin, Y.; Shi, Y.; Li, G.; Wang, Q.; Deng, Y.; Hai, L.; Wu, Y. Org. Chem. Front. 2018, 5, 1416.
doi: 10.1039/C7QO01082F |
[43] |
Pitre, S. P.; McTiernan, C. D.; Ismaili, H.; Scaiano, J. C. J. Am. Chem. Soc. 2013, 135, 13286.
doi: 10.1021/ja406311g |
[44] |
Sun, J.-G.; Yang, H.; Li, P.; Zhang, B. Org. Lett. 2016, 18, 5114.
doi: 10.1021/acs.orglett.6b02563 |
[45] |
Fu, Y.; Duan, F.; Du, Z. Asian J. Org. Chem. 2021, 10, 1071.
doi: 10.1002/ajoc.v10.5 |
[46] |
Song, S.; Zhang, Y.; Yeerlan, A.; Zhu, B.; Liu, J.; Jiao, N. Angew. Chem., Int. Ed. 2017, 56, 2487.
doi: 10.1002/anie.201612190 pmid: 28112850 |
[47] |
Ou, Y.; Huang, Y.; He, Z.; Yu, G.; Huo, Y.; Li, X.; Gao, Y.; Chen, Q. Chem. Commun. 2020, 56, 1357.
doi: 10.1039/C9CC09407E |
[48] |
Handoko.; Benslimane, Z.; Arora, P. S. Org. Lett. 2020, 22, 5811.
doi: 10.1021/acs.orglett.0c01858 pmid: 32672974 |
[49] |
Yu, X.; Zhang, S.; Jiang, Z.; Zhang, H.-S.; Wang, T. Eur. J. Org. Chem. 2020, 3110.
|
[50] |
Reiff, L. P.; Aaron, H. S. J. Am. Chem. Soc. 1970, 92, 5275.
doi: 10.1021/ja00720a077 |
[51] |
Stec, W.; Mikolajczyk, M. Tetrahedron 1973, 29, 539.
doi: 10.1016/0040-4020(73)80006-7 |
[52] |
Wang, G.; Shen, R.; Xu, Q.; Goto, M.; Zhao, Y.; Han, L-B. J. Org. Chem. 2010, 75, 3890.
doi: 10.1021/jo100473s |
[53] |
Zhou, Y.; Wang, G.; Saga, Y.; Shen, R.; Goto, M.; Zhao, Y.; Han, L.-B. J. Org. Chem. 2010, 75, 7924.
doi: 10.1021/jo101540d |
[54] |
Xiong, B.; Zhou, Y.; Zhao, C.; Goto, M.; Yin, S.-F.; Han, L.-B. Tetrahedron 2013, 69, 9373.
doi: 10.1016/j.tet.2013.09.001 |
[55] |
Cao, S.; Guo, Y.; Wang, J.; Qi, L.; Gao, P.; Zhao, H.; Zhao, Y. Tetrahedron Lett 2012, 53, 6302.
doi: 10.1016/j.tetlet.2012.09.056 |
[56] |
Cao, S.; Gao P, Guo, Y.; Zhao, H.; Wang, J.; Liu, Y.; Zhao, Y. J. Org. Chem. 2013, 78, 11283.
doi: 10.1021/jo4018342 |
[57] |
Kenner, G. W.; Williams, N. R. J. Chem. Soc. 1955, 522.
|
[58] |
Lu, D.; Meng, Z.; Thakur, G. A.; Fan, P.; Steed, J.; Tartal, C. L.; Hurst, D. P.; Reggio, P. H.; Deschamps, J. R.; Parrish, D. A.; George, C.; Järbe, T. U. C.; Lamb, R. J.; Makriyannis, A. J. Med. Chem. 2005, 48, 4576.
doi: 10.1021/jm058175c |
[59] |
Chopa, A. B.; Lockhart, M. T.; Dorn, V. B. Organometallics 2002, 21, 1425.
doi: 10.1021/om010878e |
[60] |
Carsten, B.; He, F.; Son, H. J.; Xu, T.; Yu, L. Chem. Rev. 2011, 111, 1493.
doi: 10.1021/cr100320w |
[61] |
Chen, H.; Huang, Z.; Hu, X.; Tang, G.; Xu, P.; Zhao, Y.; Cheng, C.-H. J. Org. Chem. 2011, 76, 2338.
doi: 10.1021/jo2000034 pmid: 21388215 |
[62] |
Dutartre, M.; Bayardon, J.; Juge, S. Chem. Soc. Rev. 2016, 45, 5771.
pmid: 27479243 |
[63] |
Ni, H.; Chan, W.-L.; Lu, Y. Chem. Rev. 2018, 118, 9344.
doi: 10.1021/acs.chemrev.8b00261 |
[64] |
Melvin, L. S. Tetrahedron Lett. 1981, 22, 3375.
doi: 10.1016/S0040-4039(01)81909-2 |
[65] |
Ellman, J. A.; Owens, T. D.; Tang, T. P. Acc. Chem. Res. 2002, 35, 984.
doi: 10.1021/ar020066u |
[66] |
Mohd, A.; Anitha, T.; Reddy, K. R.; Wencel-Delord, J.; Colobert, F. Eur. J. Org. Chem. 2019, 7836.
|
[67] |
Gatineau, D.; Nguyen, D. H.; Hérault, D.; Vanthuyne, N.; Leclaire, J.; Giordano, L.; Buono, G. J. Org. Chem. 2015, 80, 4132.
doi: 10.1021/acs.joc.5b00548 pmid: 25806668 |
[68] |
Fang, S.; Tan, J.-P.; Pan, J.; Zhang, H.; Chen, Y.; Ren, X.; Wang, T. Angew. Chem., Int. Ed. 2021, 60, 14921.
doi: 10.1002/anie.v60.27 |
[69] |
Mäder, P.; Kattner, L. J. Med. Chem. 2020, 63, 14243.
doi: 10.1021/acs.jmedchem.0c00960 |
[70] |
Otocka, S.; Kwiatkowska, M.; Madalińska, L.; Kiełbasiński, P. Chem. Rev. 2017, 117, 4147.
doi: 10.1021/acs.chemrev.6b00517 |
[71] |
Fang, S.; Liu, Z.; Zhang, H.; Pan, J.; Chen, Y.; Ren, X.; Wang, T. ACS Catal. 2021, 11, 13902.
doi: 10.1021/acscatal.1c03966 |
[1] | Shuang Yang, Xinqiang Fang. Kinetic Resolutions Enabled by N-Heterocyclic Carbene Catalysis: An Update [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 448-480. |
[2] | Wanting Chen, Xiongwei Zhong, Jiale Xing, Changshu Wu, Yang Gao. Progress in Asymmetric Catalytic Synthesis of C—N Axis Chiral Compounds [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 349-377. |
[3] | Quanbin Jiang. Progress in Synthesis of Axially Chiral Compounds through aza-Vinylidene o-Quinone Methide Intermediates [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 159-172. |
[4] | Chun-Xia Cheng, Lu-Ping Wu, Feng Sha, Xin-Yan Wu. Enantioselective Vinylogous Allylic Alkylation of Coumarins with Morita-Baylis-Hillman Carbonates Catalyzed by Chiral Phosphine-Amide [J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3188-3195. |
[5] | Cheng Luo, Yanli Yin, Zhiyong Jiang. Recent Advances in Asymmetric Synthesis of P-Chiral Phosphine Oxides [J]. Chinese Journal of Organic Chemistry, 2023, 43(6): 1963-1976. |
[6] | Haiqing Wang, Shuang Yang, Yuchen Zhang, Feng Shi. Advances in Catalytic Asymmetric Reactions Involving o-Hydroxybenzyl Alcohols [J]. Chinese Journal of Organic Chemistry, 2023, 43(3): 974-999. |
[7] | Weidi Cao, Xiaohua Liu. Recent Advances on Catalytic Enantioselective Protonation for Construction of α-Tertiary Carbonyl Compounds [J]. Chinese Journal of Organic Chemistry, 2023, 43(3): 961-973. |
[8] | Yan Zeng, Fei Ye. Research Progress on New Catalytic Reaction Systems for Asymmetric Synthesis of Silicon-Stereogenic Center Containing Compounds [J]. Chinese Journal of Organic Chemistry, 2023, 43(10): 3388-3413. |
[9] | Xin Kuang, Changhua Ding, Yichen Wu, Peng Wang. Catalytic Enantioselective Preparation of Chiral Allylsilanes [J]. Chinese Journal of Organic Chemistry, 2023, 43(10): 3367-3387. |
[10] | Jiayi Zhao, Yicong Ge, Chuan He. Construction of Silicon-Stereogenic Center via Catalytic Asymmetric Si—H/X—H Dehydrogenative Coupling [J]. Chinese Journal of Organic Chemistry, 2023, 43(10): 3352-3366. |
[11] | Zengjin Dai, Xumu Zhang, Qin Yin. Advances on Asymmetric Reductive Amination with Ammonium Salts as Amine Sources [J]. Chinese Journal of Organic Chemistry, 2022, 42(8): 2261-2274. |
[12] | Hui Li, Liang Yin. Research Progress of Copper-Catalyzed Direct Vinylogous Reactions [J]. Chinese Journal of Organic Chemistry, 2022, 42(6): 1573-1585. |
[13] | Mengmeng Xu, Quan Cai. Progress of Catalytic Asymmetric Diels-Alder Reactions of 2-Pyrones [J]. Chinese Journal of Organic Chemistry, 2022, 42(3): 698-713. |
[14] | Yunrong Chen, Wei Liu, Xiaoyu Yang. Recent Advances in Kinetic Resolution of Tertiary Alcohols [J]. Chinese Journal of Organic Chemistry, 2022, 42(3): 679-697. |
[15] | Hui Yan, Man Zhang, Lin Li, Teng Hu, Wulin Yang. Advances in the Catalytic Asymmetric Synthesis of Chiral Spiroketals [J]. Chinese Journal of Organic Chemistry, 2022, 42(11): 3640-3657. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||