Recent Progress in Light-Driven Direct Dehydroxylation and Derivation of Alcohols

  • Boyu Yan ,
  • Jieliang Wu ,
  • Jinfei Deng ,
  • Dan Chen ,
  • Xiushen Ye ,
  • Qiuli Yao
Expand
  • a College of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000
    b Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xi'ning 810008

Received date: 2023-03-23

  Revised date: 2023-05-04

  Online published: 2023-06-07

Supported by

National Natural Science Foundation of China(22161053); National Natural Science Foundation of China(21801261); Guizhou Science and Technology Department([2020]1Z003); Guizhou Education Department(20195201900); Zunyi Medical University Outstanding Young Talents(18zy-003); Thousand Talents Plan of Qinghai Province

Abstract

Conventional methods for the reduction of alcohols mainly deal with the indirect cleavages of Csp3—O bond involving tedious activated steps. In contrast, the more straightforward direct reduction of naturally abundant aliphatic alcohols to alkanes or other reductive derivatives poses a challenge to organic chemists due to the inherently stable and less reactive Csp3—O bond. The development of direct reductive strategies induced by light is of utmost importance due to their atom economy, step economy and redox economy, and many progresses have been made in this area these years. However, very few reviews on this topic has been reported so far. Herein, the recent progress in the light-driven direct deoxygenation of alcohols with emphasis on important advances last ten years is reviewed, which is expected to further promote the vigorous development of this field.

Cite this article

Boyu Yan , Jieliang Wu , Jinfei Deng , Dan Chen , Xiushen Ye , Qiuli Yao . Recent Progress in Light-Driven Direct Dehydroxylation and Derivation of Alcohols[J]. Chinese Journal of Organic Chemistry, 2023 , 43(9) : 3055 -3066 . DOI: 10.6023/cjoc202303036

References

[1]
(a) Modak A.; Maiti D. Org. Biomol. Chem. 2016, 14, 21.
[1]
(b) Anwar K.; Merkens K.; Aguilar Troyano F. J.; Gómez-Suárez A. Eur. J. Org. Chem. 2022, 2022, 202200330.
[2]
Haynes W. M. Handbook of Chemistry and Physics, 93rd ed., CRC Press, 2012.
[3]
(a) Ren L.; Ran M.; He J.; Qian Y.; Yao Q. Chin. J. Org. Chem. 2019, 39, 1583. (in Chinese)
[3]
(任林静, 冉茂刚, 何佳芯, 钱燕, 姚秋丽, 有机化学, 2019, 39, 1583.)
[3]
(b) Leifert D.; Studer A. Angew. Chem., Int. Ed. 2020, 59, 74.
[3]
(c) Yan B.; Zhou Y.; Wu J.; Ran M.; Li H.; Yao Q. Org. Chem. Front. 2021, 8, 5244.
[3]
(d) Meng J.; Zhou Y.; Gu J.; Deng J.; Zheng Q.; Ye X.; Yao Q. J. Org. Chem. 2023, 88, 1855.
[3]
(e) Wu J.; Yan B.; Meng J.; Yang E.; Ye X.; Yao Q. Org. Biomol. Chem. 2022, 20, 8559.
[4]
Herrmann J. M.; K?nig B. Eur. J. Org. Chem. 2013, 2013, 7017.
[5]
(a) Mao G.; Jia B.; Wang C. Chin. J. Org. Chem. 2015, 35, 284. (in Chinese)
[5]
(毛国梁, 贾冰, 王从洋, 有机化学, 2015, 35, 284.)
[5]
(b) Li C.; Zhang Q.; Fu Y. Acta Chim. Sinica 2018, 76, 501. (in Chinese)
[5]
(李翠, 张琪, 傅尧, 有机化学, 2018, 76, 501.)
[5]
(c) Pichon M. M.; Hazelard D.; Compain P. Eur. J. Org. Chem. 2019, 2019, 6320.
[6]
(a) Liu F.; Jiang H. J.; Zhou Y.; Shi Z. J. Chin. J. Chem. 2020, 38, 855.
[6]
(b) Qiu Z.; Li C. J. Chem. Rev. 2020, 120, 10454.
[7]
Gao J.; Feng J.; Du D. Chem. Asian J. 2020, 15, 3637.
[8]
Nguyen J. D.; Reiss B.; Dai C.; Stephenson C. R. Chem. Commun. 2013, 49, 4352.
[9]
Uranga J. G.; Chiosso A. F.; Santiago A. N. RSC Adv. 2013, 3, 11493.
[10]
McCallum T.; Slavko E.; Morin M.; Barriault L. Eur. J. Org. Chem. 2015, 2015, 81.
[11]
Takada Y.; Caner J.; Kaliyamoorthy S.; Naka H.; Saito S. Chem. Eur. J. 2017, 23, 18025.
[12]
Stache E. E.; Ertel A. B.; Tomislav R.; Doyle A. G. ACS Catal. 2018, 8, 11134.
[13]
Cao D.; Chen Z.; Lv L.; Zeng H.; Peng Y.; Li C. J. iScience 2020, 23, 101419.
[14]
Ran C.-K.; Niu Y.-N.; Song L.; Wei M.-K.; Cao Y.-F.; Luo S.-P.; Yu Y.-M.; Liao L.-L.; Yu D.-G. ACS Catal. 2022, 12, 18.
[15]
Li W. D.; Wu Y.; Li S. J.; Jiang Y. Q.; Li Y. L.; Lan Y.; Xia J. B. J. Am. Chem. Soc. 2022, 144, 8551.
[16]
Fan Z.; Chen S.; Zou S.; Xi C. ACS Catal. 2022, 12, 2781.
[17]
Dai C.; Narayanam J. M.; Stephenson C. R. Nat. Chem. 2011, 3, 140.
[18]
Xue W.; Yuan X.; Cheng S.; Shi Y. Synthesis 2014, 46, 331.
[19]
Zhao Y.; Antonietti M. ChemPhotoChem 2018, 2, 720.
[20]
Mohite A. R.; Phatake R. S.; Dubey P.; Agbaria M.; Shames A. I.; Lemcoff N. G.; Reany O. J. Org. Chem. 2020, 85, 12901.
[21]
Tomar P.; Braun T.; Kemnitz E. Chem. Commun. 2018, 54, 9753.
[22]
Barreiro E. J.; Kummerle A. E.; Fraga C. A. Chem. Rev. 2011, 111, 5215.
[23]
(a) Stermitz F. R.; Seiber R. P.; Nicodem D. E. J. Org. Chem. 1968, 33, 1136.
[23]
(b) Stermitz F. R.; Wei C. C.; O'Donnell C. M. J. Am. Chem. Soc. 1970, 92, 2745.
[23]
(c) Takeuchi F.; Sugiyama T.; Fujimori T.; Seki K.; Harada Y.; Sugimori A. Bull. Chem. Soc. Jpn 1974, 47, 1245.
[23]
(d) Mariano P. S. Tetrahedron 1983, 39, 3845.
[23]
(e) Padwa A. Chem. Rev. 2002, 77, 37.
[24]
Jin J.; MacMillan D. W. C. Nature 2015, 525, 87.
[25]
Nacsa E. D.; MacMillan D. W. C. J. Am. Chem. Soc. 2018, 140, 3322.
[26]
Dong Z.; MacMillan, D. W. C. Nature 2021, 598, 451.
[27]
Sakai H. A.; MacMillan D. W. C. J. Am. Chem. Soc. 2022, 144, 6185.
[28]
Intermaggio N. E.; Millet A.; Davis D. L.; MacMillan D. W. C. J. Am. Chem. Soc. 2022, 144, 11961.
[29]
Wang J. Z.; Sakai H. A.; MacMillan D. W. C. Angew. Chem., Int. Ed. 2022, 61, e202207150.
[30]
Guo H. M.; Wu X. Nat. Commun. 2021, 12, 5365.
[31]
Guo H. M.; He B. Q.; Wu X. Org. Lett. 2022, 24, 3199.
[32]
Zhang W.; Ning S.; Li Y.; Wu X. Chem. Commun. 2022, 58, 12843.
[33]
Bao W. H.; Wu X. J. Org. Chem. 2023, 88, 3975.
[34]
Tan C. Y.; Kim M.; Park I.; Kim Y.; Hong S. Angew. Chem., Int. Ed. 2022, 61, e202213857.
[35]
Liu W.; Yang X.; Zhou Z.-Z.; Li C.-J. Chem 2017, 2, 688.
[36]
Zhang F.; Hou H.; Xu X.; Chen Z.; Ke F. Chin. J. Org. Chem. 2021, 41, 833. (in Chinese)
[36]
(张帆, 侯慧青, 许秀枝, 陈志涛, 柯方, 有机化学, 2021, 41, 833.)
[37]
Xie Z.; Lan J.; Zhu H.; Lei G.; Jiang G.; Le Z. Chin. Chem. Lett. 2021, 32, 1427.
[38]
Wang M.; Ren J.; Xiao Q.; Song A.; Yu S.; Wang R.; Xing L. Catal. Lett. 2023, doi:10.1007/s10562-022-04266-y.
Outlines

/