REVIEWS

Research Progress and Prospect of Aggregation-Induced Emission Supramolecular Luminescence Materials

  • Huiming Lu ,
  • Lamaocao Ma ,
  • Hengchang Ma
Expand
  • a College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070
    b Shaw Library, Northwest Normal University, Lanzhou 730070

Received date: 2023-05-10

  Revised date: 2023-06-30

  Online published: 2023-07-27

Supported by

National Natural Science Foundation of China(22165026)

Abstract

The construction of luminescent materials by supramolecular self-assembly is one of the important fields in supramolecular chemistry. Supramolecular self-assembly, as a simple and efficient strategy, can construct different types of molecules through non-covalent bonding, leading to the multifunctional assembly with precise structure, which further endows supramolecular materials with unique photophysical properties. Due to the dynamic and reversible nature of non-covalent bond interaction, supramolecular luminescence materials have the characteristics of specific recognition of stimuli and sensitivity to microenvironment changes, so they are widely used in the fields of biosensing and imaging, drug delivery, chemical sensing, artificial light collection system, information encryption and photocatalysis. Based on this, in order to understand the latest research progress of supramolecular luminescence materials, the latest research progress of supramolecular luminescence materials from design to preparation and application in the last four years is systematically described, mainly in terms of hydrogen bond interaction, π-π stacking and various non-covalent bond interactions. Its future challenges are prospected.

Cite this article

Huiming Lu , Lamaocao Ma , Hengchang Ma . Research Progress and Prospect of Aggregation-Induced Emission Supramolecular Luminescence Materials[J]. Chinese Journal of Organic Chemistry, 2023 , 43(12) : 4075 -4105 . DOI: 10.6023/cjoc202305010

References

[1]
(a) Abbas M.; Atiq A.; Xing R.; Yan X. J. Mater. Chem. B 2021, 9, 4444.
[1]
(b) Giuri D.; Ravarino P.; Tomasini C. Org. Biomol. Chem. 2021, 19, 4622.
[1]
(c) Ke R.; Lin Z.; Zhang H.; Zhou S. J. Phys.: Conf. Ser. 2022, DOI: 10.1088/1742-6596/2324/1/012007.
[2]
Pederson C. J. J. Am. Chem. Soc. 1967, 89, 7017.
[3]
(a) Zhang G.; Mastalerz M. Chem. Soc. Rev. 2014, 43, 1934.
[3]
(b) James T. D. Front. Chem. 2017, 5, 83.
[4]
Ji X.; Ahmed M.; Long L.; Khashab N. M.; Huang F.; Sessler J. L. Chem. Soc. Rev. 2019, 48, 2682.
[5]
Lin M.; Dai Y.; Xia F.; Zhang X. J. Mater. Sci. Eng., C 2021, 119, 111626.
[6]
Chen H.; Fraser S. J. Nat. Rev. Mater. 2021, 6, 804.
[7]
(a) Dey N.; Haynes C. J. E. ChemPlusChem 2021, 86, 418.
[7]
(b) Zeng W.; Lin M.; Zhu L. Y.; Lin M. J. Chin. J. Chem. 2022, 40, 39.
[8]
Webber M. J.; Langer R. Chem. Soc. Rev. 2017, 46, 6600.
[9]
(a) Kumar A.; Sun S. S.; Lees A. J. Coord. Chem. Rev. 2008, 252, 922.
[9]
(b) Mako T. L.; Racicot J. M.; Levine M. Chem. Rev. 2019, 119, 322.
[10]
Liu J.; Sun J.; Pan C.; Yang G. ChemistrySelect 2023, 8, e20220297.
[11]
Hou X.; Ke C.; Bruns C. J.; Mc Gonigal P. R.; Pettman R. B.; Stoddart J. F. Nat. Commun. 2015, 6, 6884.
[12]
Qin L.; Wang R.; Xin X.; Zhang M.; Liu T.; Lv H.; Yang G. Y. Appl. Catal.,B 2022, 312, 121386.
[13]
Xu A.; Wang G.; Li Y.; Dong H.; Yang S.; He P.; Ding G. Small 2020, 16, 2004621.
[14]
Luo J.; Xie Z.; Lam J. W. Y.; Cheng L.; Chen H.; Qiu C.; Kwok H. S.; Zhan X. W.; Liu Y. Q.; Zhu D. B.; Tang B. Z. Chem. Commun. 2001, 1740.
[15]
Kwok R. T. K.; Leung C. W. T.; Lam J. W. Y.; Tang B. Z. Chem. Soc. Rev. 2015, 44, 4228.
[16]
Nie H.; Wei Z.; Ni X. L.; Liu Y. Chem. Rev. 2022, 122, 9032.
[17]
(a) Mao X. Y.; Xie F. L.; Wang X. H.; Wang Q. S.; Qiu Z. P.; Elsegood M. R. J.; Bai J.; Feng X.; Redshaw C.; Huo Y. P.; Hu J. Y.; Chen Q. Chin. J. Chem. 2021, 39, 2154.
[17]
(b) Han T.; Yan D. Y.; Wu Q.; Song N.; Zhang H. K.; Wang D. Chin. J. Chem. 2021, 39, 677.
[18]
Gao H. Q.; Jiao D.; Ou H. L.; Zhang J. T.; Ding D. Acta Chim. Sinica 2021, 79, 319. (in Chinese)
[18]
(高贺麒, 焦迪, 欧翰林, 章经天, 丁丹, 化学学报, 2021, 79, 319.)
[19]
Huang A.; Li Q.; Li Z. Chin. J. Chem. 2022, 40, 2356.
[20]
Li J.; Wang J.; Li H.; Li H.; Song N.; Wang D.; Tang B. Z. Chem. Soc. Rev. 2020, 49, 1144.
[21]
Wang Y.; Wu H.; Hu W.; Stoddart J. F. Adv. Mater. 2022, 34, 2105405.
[22]
Zhang B.; Li Z.; Zhang S.; Lv J.; Dong D.; Han B.; Yang Y.; Yang Z.; Sun Y.; Lu H.; Ma H. Ind. Eng. Chem. Res. 2021, 60, 11649.
[23]
Xiao T.; Wu H.; Sun G.; Diao K.; Wei X.; Li Z. Y.; Sun X.; Wang L. Chem. Commun. 2020, 56, 12021.
[24]
(a) Xiao T.; Zhang L.; Wu H.; Qian H.; Ren D.; Li Z. Y.; Sun Q. Chem. Commun. 2021, 57, 5782.
[24]
(b) Xiao T.; Shen Y.; Bao C.; Diao K.; Ren D.; Qian H.; Zhang L. RSC Adv. 2021, 11, 30041.
[25]
Tao L.; Luo Z. W.; Lan K.; Wang P.; Guan Y.; Shen Z.; Xie H. L. Polym. Chem. 2020, 11, 6288.
[26]
Li D.; Yang Y.; Yang J.; Fang M.; Tang B. Z.; Li Z. Nat. Commun. 2022, 13, 347.
[27]
Sun X. W.; Wang Z. H.; Li Y. J.; Zhang Y. F.; Zhang Y. M.; Yao H.; Wei T. B.; Lin Q. Macromolecules 2021, 54, 373.
[28]
Gao A.; Han Q.; Wang Q.; Cao X.; Chang X.; Zhou Y. Dyes Pigm. 2021, 195, 109689.
[29]
Feng J.; Gu Z.; Ma W.; Jiang S.; Jiao Y.; Liu L.; Xu B.; Tian W. J. Phys. Chem. C 2021, 125, 21270.
[30]
Zhang Q.; Wang W.; Cai C.; Wu S.; Li J.; Li F.; Dong S. Mater. Horiz. 2022, 9, 1984.
[31]
Yao Y.; Xu Z.; Liu B.; Xiao M.; Yang J.; Liu W. Adv. Funct. Mater. 2020, 2006944.
[32]
Cho H. J.; Jeong D. Y.; Moon H.; Kim T.; Chung Y. K.; Lee Y.; Lee Z.; Huh J.; You Y.; Song C. Aggregate 2022, 3, e168.
[33]
Liu H.; Hu Z.; Zhang H.; Li Q.; Lou K.; Ji X. Angew. Chem. 2022, 134, e202203.
[34]
Chen Y.; Xu Z.; Hu W.; Li X.; Cheng Y.; Quan Y. Macromol. Rapid Commun. 2021, 42, 2000548.
[35]
Bhaumik S. K.; Patra Y. S.; Banerjee S. Chem. Commun. 2020, 56, 9541.
[36]
Rana P.; Marappan G.; Sivagnanam S.; Surya V. J.; Sivalingam Y.; Das P. Mater. Chem. Front. 2022, 6, 1421.
[37]
Ma Y.; Li B.; Zhang K.; Wan Q.; Wang Z.; Tang B. Z. J. Mater. Chem. C 2020, 8, 13705.
[38]
Qu W. J.; Yang H. H.; Hu J. P.; Qin P.; Zhao X. X.; Lin Q.; Yao H.; Zhang Y. M.; Wei T. B. Dyes Pigm. 2021, 186, 108949.
[39]
Yao H.; Niu Y. B.; Kan X. T.; Hu Y. P.; He Y. Y.; Wei T. B.; Zhang Y. M.; Lin Q. Dyes Pigm. 2022, 198, 110021.
[40]
Yang X. G.; Zhang J. R.; Guo J. H.; Ma C. Y.; Tian X. K.; Dou C. X. Dyes Pigm. 2023, 210, 110988.
[41]
Li Y. J.; Zhang Y. F.; Zhang Y. M.; Wang Z. H.; Yang H. L.; Yao H.; Wei T. B.; Lin Q. Dyes Pigm. 2020, 181, 108563.
[42]
Chen Y.; Zhang L.; Wang L.; Guo L.; Liu C. Mater. Chem. Front. 2021, 5, 7808.
[43]
Luo H.; Ren X. K.; Zhang B. H.; Huang Y. Q.; Lu L.; Song J. Dyes Pigm. 2021, 188, 109148.
[44]
Zhao X.; Zhao L.; Xiao Q.; Xiong H. Chin. Chem. Lett. 2021, 32, 1363.
[45]
Hunter C. A.; Sanders J. K. M. J. Am. Chem. Soc. 1990, 112, 5525.
[46]
(a) Du X.; Hao H.; Qin A.; Tang B. Z. Dyes Pigm. 2020, 180, 108413.
[46]
(b) Bai H.; Liu Z.; Zhang T.; Du J.; Zhou C.; He W.; Chau J. H. C.; Kwok R. T. K.; Lam J. W. Y.; Tang B. Z. ACS Nano 2020, 14, 7552.
[47]
Zhou W. L.; Chen Y.; Yu Q.; Zhang H.; Liu Z. X.; Dai X. Y.; Li J. J.; Liu Y. Nat. Commun. 2020, 11, 4655.
[48]
Li Y.; Qin C.; Li Q.; Wang P.; Miao X.; Jin H.; Ao W.; Cao L. Adv. Optical Mater. 2020, 8, 1902154.
[49]
Bi X.; Hao W.; Liu H.; Chen X.; Xie M.; Wang Y.; Zhao Y. Dyes Pigm. 2021, 189, 109267.
[50]
Shen F. F.; Chen Y.; Xu X.; Yu H. J.; Wang H.; Liu Y. Small 2021, 17, 2101185.
[51]
Shen F. F.; Chen Y.; Dai X.; Zhang H. Y.; Zhang B.; Liu Y.; Liu Y. Chem. Sci. 2021, 12, 1851.
[52]
Shi X.; Zhang J.; Liu J.; Zhao X.; Wang H.; Wei P.; Ni X.; Sung H. H.-Y.; Williams I. D.; Ng W. K.; Wong K. S.; Lam J. W. Y.; Wang L.; Tang B. Z. 2021, DOI: 10.26434/chemrxiv-2021-dh4vj.
[53]
Li X. L.; Wang Y.; Zhang M. H.; Jiang M.; Liu H.; Wang R. Z.; Yu S.; Xing L. B. Dyes Pigm. 2022, 197, 109895.
[54]
Wang Y.; Zhu R.; Hang Y.; Wang R.; Dong R.; Yu S.; Xing L. B. Polym. Chem. 2023, 14, 248.
[55]
Luo Y.; Gan S.; Zhang W.; Jia M.; Chen L.; Redshaw C.; Tao Z.; Xiao X. Mater. Chem. Front. 2022, 6, 1021.
[56]
Tao W.; Zhang L.; Gong J.; Zhang J. X.; Wang K.; Jiang X.; He X.; Wei P. Dyes Pigm. 2023, 210, 110967.
[57]
Zhang T. T.; Yang X. N.; Hu J. H.; Luo Y.; Liu H. J.; Tao Z.; Xiao X.; Redshaw C. Chem. Eng. J. 2023, 452, 138960.
[58]
Ma X.; Yue J.; Qiao B.; Zhou L.; Gao Y.; Wang Y.; Lai Y.; Geng Y.; Feng E.; Liu M. Mater. Adv. 2021, 2, 6075.
[59]
Zhou M.; Li L.; Xie W.; He Z.; Li J. Macromol. Rapid Commun. 2021, 42, 2100248.
[60]
Wang N.; Zhao J.; Xu Q.; Xing P.; Xu X. D.; Yang H. B.; Feng S. J. Mater. Chem. C 2022, 10, 13860.
[61]
Li W. J.; Jiang H.; Wang X. Q.; Zhang D.-Y.; Zhu Y.; Ke Y.; Wang W.; Yang H. B. Mater. Today Chem. 2022, 24, 100874.
[62]
Wang W. M.; Dai D.; Wu J. R.; Wang C. Y.; Wang Y.; Yang Y. W. Chem. Eur. J. 2021, 27, 11879.
[63]
Xiao T.; Chen D.; Qian H.; Shen Y.; Zhang L.; Li Z. Y.; Sun X. Q. Dyes Pigm. 2023, 210, 110958.
[64]
Li R.; Chen W.; Yang Y.; Li H.; Xu F.; Duan Z.; Liang T.; Wen H.; Tian W. Polym. Chem. 2020, 11, 5642.
[65]
Wu H.; Xiao T. Front. Chem. 2020, 8, 610093.
[66]
Zhou W.; Wang Z.; Zhang J.; Hua S.; Xie Q.; Liu Z.; Liu L.; Liang A. Dyes Pigm. 2020, 172, 107790.
[67]
Xiao T.; Wang J.; Shen Y.; Bao C.; Lia Z. Y.; Sun X. O.; Wang L. Chin. Chem. Lett. 2021, 32, 1377.
[68]
Cuc T. T. K.; Nhien P. Q.; Khang T. M.; Chen H. Y.; Wu C. H.; Hue B. B.; Li Y. K.; Wu Judy. I.; Lin H. C. ACS Appl. Mater. Interfaces 2021, 13, 20662.
[69]
Wang X. H.; Lou X. Y.; Lu T.; Wang C.; Tang J.; Liu F.; Wang Y.; Yang Y. W. ACS Appl. Mater. Interfaces 2021, 13, 4593.
[70]
Zhu X.; Zhao J.; Dai F.; Xu W.; Chen L.; Xiao X.; Tao Z.; Zhang C. Spectrochim. Acta, Part A 2021, 250, 119381.
[71]
Zuo M.; Qian W.; Hao M.; Wang K.; Hua X. Y; Wang L. Chin. Chem. Lett. 2021, 32, 1381.
[72]
Liu D.; Du J.; Qi S.; Li M.; Wang J.; Liu M.; Du X.; Wang X.; Ren B.; Wu D.; Shen J. Mater. Chem. Front. 2021, 5, 1418
[73]
Zhao X.; Chen Y.; Dai X. Y.; Zhou W. L.; Li J. J.; Liu Y. Adv. Photonics Res. 2020, 1, 2000007.
[74]
Liu J.; Sun X. W.; Huang T. T.; Zhang Y. M.; Yao H.; Wei T. B.; Lin Q. Chin. J. Chem. 2021, 39, 3421.
[75]
Liu G.; Zhang H.; Xu X.; Zhou Q.; Dai X.; Fan L.; Mao P.; Liu Y. Mater. Today Chem. 2021, 22, 100628.
[76]
Chen C.; Ni X.; Tian H. W.; Liu Q.; Guo D. S.; Ding D. Angew. Chem. 2020, 132, 10094.
[77]
Chen X.; Gao H.; Deng Y.; Jin Q.; Ji J.; Ding D. ACS Nano 2020, 14, 5121.
[78]
Li D.; Chen J.; Xu X.; Bao C.; Zhang Q. Chem. Commun. 2020, 56, 13385.
[79]
Fu R.; Zhang S.; Liu X. D.; Xu J.; Feng S. Chem. Commun. 2020, 56, 6719.
[80]
Li B.; Lin C.; Lu C.; Zhang J.; He T.; Qiu H.; Yin S. Mater. Chem. Front. 2020, 4, 869.
[81]
Hu Y. X.; Jia P. P.; Zhang C. W.; Xu X. D.; Niu Y.; Zhao X.; Xu Q.; Xu L.; Yang H. B. Org. Chem. Front. 2021, 8, 5250.
[82]
Feng Y.; Jiang N.; Zhu D.; Su Z.; Bryce M. R. J. Mater. Chem. C 2020, 8, 11540.
[83]
Wei T. B.; Zhao Q.; Li Z. H.; Dai X. Y.; Niu Y. B.; Yao H.; Zhang Y. M.; Qu W. J.; Lin Q. Dyes Pigm. 2021, 192, 109436.
[84]
Yao H.; Zhou Q.; Zhang Y.; Hua Y.; Kana X.; Chena Y.; Gong G.; Zhang Q.; Wei T. B.; Lin Q. Chin. Chem. Lett. 2020, 31, 1231.
[85]
Jiang H.; Xie L.; Duan Z.; Lin K.; He Q.; Lynch V. M.; Sessler J. L.; Wang H. Chem.-Eur. J. 2021, 27, 15006.
[86]
Shi N.; Ding Y.; Wang D.; Hu X.; Li L.; Dai C.; Liu D. Int. J. Biol. Macromol. 2021, 187, 722.
[87]
Song Q.; Goia S.; Yang J.; Stephen C. L. Hall.; Staniforth M.; Stavros V. G.; Perrier S.. J. Am. Chem. Soc. 2021, 143, 382.
[88]
Liu H.; Wei S.; Qiu H.; Si M.; Lin G.; Lei Z.; Lu W.; Zhou L.; Chen T. Adv. Funct. Mater. 2022, 32, 2108830.
[89]
Liu Y.; Cao Y.; Zhang X.; Lin Y.; Li W.; Demir B.; Searles D. J.; Whittaker A. K.; Zhang A. ACS Nano 2021, 15, 20067.
[90]
Wang Y.; Niu D.; Ouyang G.; Liu M. Nat. Commun. 2022, 13, 1710.
[91]
Gao K.; Feng Q.; Zhang Z.; Zhang Z.; Hou Y.; Mu C.; Li X.; Zhang M. Angew. Chem., Int. Ed. 2022, 61, e2022099.
Outlines

/