REVIEWS

Recent Advances in Electrochemical Silylation

  • Junyong Wang ,
  • Na Li ,
  • Jie Ke ,
  • Chuan He
Expand
  • Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055

Received date: 2023-08-24

  Revised date: 2023-09-27

  Online published: 2023-10-30

Supported by

National Natural Science Foundation of China(22122102); National Natural Science Foundation of China(22101113); National Natural Science Foundation of China(22271134); Guangdong Provincial Key Laboratory of Catalysis(2020B121201002); Guangdong Pearl River Talent Program(2019QN01Y628); Shenzhen Science and Technology Innovation Committee(RCJC20221008092723013)

Abstract

Organosilicon compounds are widely applied in synthesis, materials, medicine and other fields due to their unique physical and chemical properties, and have attracted widespread attention from chemists. Therefore, it is particularly important to develop mild and efficient synthesis methods to construct organosilicon compounds. In recent years, the rapid development of electrochemistry provided a new strategy for the synthesis of organosilicon compounds. Due to its advantages of green and mild conditions, simple and efficient reactions, and no need for additional redox reagents, significant progress has been made in the synthesis of organosilicon compounds through electrochemical silylation reactions. The latest progress in electro- chemical silylation is mainly reviewed from two aspects: electrochemical silylation reactions via cathodic reduction, and electrochemical silylation reactions via anodic oxidation.

Cite this article

Junyong Wang , Na Li , Jie Ke , Chuan He . Recent Advances in Electrochemical Silylation[J]. Chinese Journal of Organic Chemistry, 2024 , 44(3) : 927 -939 . DOI: 10.6023/cjoc202308022

References

[1]
(a) Chan T. H.; Wang D. Chem. Rev. 1992, 92, 995.
[1]
(b) Brook M. A. Silicon in Organic, Organometallic and Polymer Chemistry, Wiley, New York, 2000.
[1]
(c) Liu J.; Zhang W.; Xi Z. Chin. J. Org. Chem. 2009, 29, 491. (in Chinese)
[1]
( 刘俊辉, 张文雄, 席振峰, 有机化学, 2009, 29, 491.)
[1]
(d) Luo H.; Zhang Z.; Liu H.; Liu H. Chin. J. Org. Chem. 2015, 35, 802. (in Chinese)
[1]
( 罗海清, 张志鹏, 刘海东, 柳辉金, 有机化学, 2015, 35, 802.)
[1]
(e) Wang M.; Yu M.; Wang W.; Lin W.; Luo F. Chin. J. Org. Chem. 2019, 39, 3145. (in Chinese)
[1]
( 王明凤, 余茂栋, 王文蜀, 林伟立, 罗斐贤, 有机化学, 2019, 39, 3145.)
[1]
(f) Li L.; Wei Y.-L.; Xu L.-W. Synlett 2020, 31, 21.
[2]
(a) Chen J.; Cao Y. Macromol. Rapid Commun. 2007, 28, 1714.
[2]
(b) Kamino B. A.; Bender T. P. Chem. Soc. Rev. 2013, 42, 5119.
[2]
(c) Zuo Y.; Gou Z.; Quan W.; Lin W. Coord. Chem. Rev. 2021, 438, 213887.
[2]
(d) Zhai X.-Y.; Wang X.-Q.; Wu B.; Zhou Y.-G. Chin. J. Chem. 2022, 40, 21.
[2]
(e) Jones R. G.; Ando W.; Chojnowski J. Silicon-Containing Polymers, Springer, Berlin, 2000.
[3]
(a) Langkopf E.; Schinzer D. Chem. Rev. 1995, 95, 1375.
[3]
(b) Franz A. K.; Wilson S. O. J. Med. Chem. 2013, 56, 388.
[3]
(c) Fujii S.; Hashimoto Y. Future Med. Chem. 2017, 9, 485.
[3]
(d) Ramesh R.; Reddy D. S. J. Med. Chem. 2018, 61, 3779.
[4]
(a) Remond E.; Martin C.; Martinez J.; Cavelier F. Chem. Rev. 2016, 116, 11654.
[4]
(b) Mortensen M.; Husmann R.; Veri E.; Bolm C. Chem. Soc. Rev. 2009, 38, 1002.
[5]
(a) Cheng C.; Hartwig J. F. Chem. Rev. 2015, 115, 8946.
[5]
(b) Xu Z.; Huang W.-S.; Zhang J.; Xu L.-W. Synthesis 2015, 47, 3645.
[5]
(c) Richter S. C.; Oestreich M. Trends Chem. 2020, 2, 13.
[5]
(d) Li B.; Dixneuf P. H. Chem. Soc. Rev. 2021, 50, 5062.
[5]
(e) Ge Y.; Huang X.; Ke J.; He C. Chem. Catal. 2022, 2, 2898.
[6]
(a) Troegel D.; Stohrer J. Coord. Chem. Rev. 2011, 255, 1440.
[6]
(b) Oestreich M. Angew. Chem., Int. Ed. 2016, 55, 494.
[7]
(a) Xu L.; Zhang S.; Li P. Org. Chem. Front. 2015, 2, 459.
[7]
(b) Zhang L.; Hang Z.; Liu Z.-Q. Angew. Chem., Int. Ed. 2016, 55, 236.
[7]
(c) Yang Y.; Song R.-J.; Ouyang X.-H.; Wang C.-Y.; Li J.-H.; Luo S. Angew. Chem., Int. Ed. 2017, 56, 7916.
[7]
(d) Zeng Y.; Liu X.-D.; Guo X.-Q.; Gu Q.-S.; Li Z.-L.; Chang X.-Y.; Liu X.-Y. Sci. China: Chem. 2019, 62, 1529.
[7]
(e) Zhang X.; Fang J.; Cai C.; Lu G. Chin. Chem. Lett. 2021, 32, 1280.
[8]
(a) Hou J.; Ee A.; Cao H.; Ong H.-W.; Xu J.-H.; Wu J. Angew. Chem., Int. Ed. 2018, 57, 17220.
[8]
(b) Li J.-S.; Wu J. ChemPhotoChem 2018, 2, 839.
[8]
(c) Yu X.; Luebbesmeyer M.; Studer A. Angew. Chem., Int. Ed. 2021, 60, 675.
[8]
(d) Ren L.-Q.; Li N.; Ke J.; He C. Org. Chem. Front. 2022, 9, 6400.
[8]
(e) Fan X.; Zhang M.; Gao Y.; Zhou Q.; Zhang Y.; Yu J.; Xu W.; Yan J.; Liu H.; Lei Z.; Ter Y. C.; Chanmungkalakul S.; Lum Y.; Liu X.; Cui G.; Wu J. Nat. Chem. 2023, 15, 666.
[9]
Hengge E.; Litscher G. Angew. Chem., Int. Ed. 1976, 15, 370.
[10]
(a) Francke R.; Little R. D. Chem. Soc. Rev. 2014, 43, 2492.
[10]
(b) Yan M.; Kawamata Y.; Baran P. S. Chem. Rev. 2017, 117, 13230.
[10]
(c) Jiang Y.; Xu K.; Zeng C. Chem. Rev. 2018, 118, 4485.
[10]
(d) Kaerkaes M. D. Chem. Soc. Rev. 2018, 47, 5786.
[10]
(e) Okada Y.; Chiba K. Chem. Rev. 2018, 118, 4592.
[10]
(f) Tang S.; Liu Y.; Lei A. Chem 2018, 4, 27.
[10]
(g) Waldvogel S. R.; Lips S.; Selt M.; Riehl B.; Kampf C. J. Chem. Rev. 2018, 118, 6706.
[10]
(h) Yang Q.-L.; Fang P.; Mei T.-S. Chin. J. Chem. 2018, 36, 338.
[10]
(i) Jiao K.-J.; Xing Y.-K.; Yang Q.-L.; Qiu H.; Mei T.-S. Acc. Chem. Res. 2020, 53, 300.
[10]
(j) Xiong P.; Xu H.-C. Acc. Chem. Res. 2019, 52, 3339.
[11]
(a) Jouikov V. V. Russ. Chem. Rev. 1997, 66, 509.
[11]
(b) Fuchigami T. Electrochemistry of Organosilicon Compounds, In the Chemistry of Organic Silicon Compounds, Ed: Rappoport, Z.; Rappoport, Z.; Apeloig, Y. Wiley, Chichester, 1998.
[11]
(c) Beck A. D.; Haufe S.; Waldvogel S. R. ChemElectroChem 2023, 10, e202201149.
[11]
(d) Kuciński K. Inorg. Chem. Front. 2023, 10, 1382.
[12]
Kashimura S.; Ishifune M.; Yamashita N.; Bu H.-B.; Take- bayashi M.; Kitajima S.; Yoshiwara D.; Kataoka Y.; Nishida R.; Kawasaki S.-I.; Murase H.; Shono T. J. Org. Chem. 1999, 64, 6615.
[13]
(a) Ishifune M.; Kashimura S.; Kogai Y.; Fukuhara Y.; Kato T.; Bu H.-B.; Yamashita N.; Murai Y.; Murase H.; Nishida R. J. Organomet. Chem. 2000, 611, 26.
[13]
(b) Ishifune M.; Kogai Y.; Iijima H.; Kera Y.; Yamashita N.; Kashimura S. J. Macromol. Sci., Pure Appl. Chem. 2004, A41, 373.
[13]
(c) Ishifune M.; Kogai Y.; Iijima H.; Kera Y.; Yamashita N.; Kashimura S. Electrochemistry 2004, 72, 159.
[14]
Aihara S.; Ishii R.; Fukuhara M.; Kamata N.; Terunuma D.; Hirano Y.; Saito N.; Aramata M.; Kashimura S. J. Non-Cryst. Solids 2001, 296, 135.
[15]
(a) Ishifune M.; Sana C.; Ando M.; Tsuyama Y. Polym. Int. 2011, 60, 1208.
[15]
(b) Mavric A.; Badasyan A.; Mali G.; Valant M. Eur. Polym. J. 2017, 90, 162.
[16]
Guan W.; Lu L.; Jiang Q.; Gittens A. F.; Wang Y.; Novaes L. F. T.; Klausen R. S.; Lin S. Angew. Chem., Int. Ed. 2023, 62, e202303592.
[17]
Lu L.; Siu J. C.; Lai Y.; Lin S. J. Am. Chem. Soc. 2020, 142, 21272.
[18]
Chen H.; Zhu C.; Yue H.; Rueping M. Angew. Chem., Int. Ed. 2023, 62, e202306498.
[19]
Liang H.; Wang L.-J.; Ji Y.-X.; Wang H.; Zhang B. Angew. Chem., Int. Ed. 2021, 60, 1839.
[20]
Ke J.; Liu W.; Zhu X.; Tan X.; He C. Angew. Chem., Int. Ed. 2021, 60, 8744.
[21]
Han P.; Yin M.; Li H.; Yi J.; Jing L.; Wei B. Adv. Synth. Catal. 2021, 363, 2757.
[22]
Jiang C.; Liao Y.; Li H.; Zhang S.; Liu P.; Sun P. Adv. Synth. Catal. 2023, 365, 1205.
[23]
Chen X.; Huang Y.-G.; Zhong W.-Q.; Huang J.-M. Org. Lett. 2023, 25, 4562.
[24]
Jiang Y.; Xu K.; Zeng C. CCS Chem. 2022, 4, 1796.
[25]
Wan Q.; Hou Z.-W.; Zhao X.-R.; Xie X.; Wang L. Org. Lett. 2023, 25, 1008.
[26]
Biremond T.; Jubault P.; Poisson T. ACS Org. Inorg. Au 2022, 2, 148.
[27]
Aelterman M.; Biremond T.; Jubault P.; Poisson T. Chem.-Eur. J. 2022, 28, e202202194.
Outlines

/