Chinese Journal of Organic Chemistry ›› 2024, Vol. 44 ›› Issue (3): 927-939.DOI: 10.6023/cjoc202308022 Previous Articles Next Articles
Special Issue: 光电催化综述合集
REVIEWS
收稿日期:
2023-08-24
修回日期:
2023-09-27
发布日期:
2024-04-02
基金资助:
Junyong Wang, Na Li, Jie Ke(), Chuan He()
Received:
2023-08-24
Revised:
2023-09-27
Published:
2024-04-02
Contact:
*E-mail: hec@sustech.edu.cn; kej@mail.sustech.edu.cn
Supported by:
Share
Junyong Wang, Na Li, Jie Ke, Chuan He. Recent Advances in Electrochemical Silylation[J]. Chinese Journal of Organic Chemistry, 2024, 44(3): 927-939.
[1] |
(a) Chan T. H.; Wang D. Chem. Rev. 1992, 92, 995.
doi: 10.1021/cr00013a012 |
(b) Brook M. A. Silicon in Organic, Organometallic and Polymer Chemistry, Wiley, New York, 2000.
|
|
(c) Liu J.; Zhang W.; Xi Z. Chin. J. Org. Chem. 2009, 29, 491. (in Chinese)
|
|
( 刘俊辉, 张文雄, 席振峰, 有机化学, 2009, 29, 491.)
|
|
(d) Luo H.; Zhang Z.; Liu H.; Liu H. Chin. J. Org. Chem. 2015, 35, 802. (in Chinese)
doi: 10.6023/cjoc201410012 |
|
( 罗海清, 张志鹏, 刘海东, 柳辉金, 有机化学, 2015, 35, 802.)
doi: 10.6023/cjoc201410012 |
|
(e) Wang M.; Yu M.; Wang W.; Lin W.; Luo F. Chin. J. Org. Chem. 2019, 39, 3145. (in Chinese)
doi: 10.6023/cjoc201904024 |
|
( 王明凤, 余茂栋, 王文蜀, 林伟立, 罗斐贤, 有机化学, 2019, 39, 3145.)
doi: 10.6023/cjoc201904024 |
|
(f) Li L.; Wei Y.-L.; Xu L.-W. Synlett 2020, 31, 21.
doi: 10.1055/s-0039-1691496 |
|
[2] |
(a) Chen J.; Cao Y. Macromol. Rapid Commun. 2007, 28, 1714.
doi: 10.1002/marc.v28:17 pmid: 23549525 |
(b) Kamino B. A.; Bender T. P. Chem. Soc. Rev. 2013, 42, 5119.
doi: 10.1039/c3cs35519e pmid: 23549525 |
|
(c) Zuo Y.; Gou Z.; Quan W.; Lin W. Coord. Chem. Rev. 2021, 438, 213887.
doi: 10.1016/j.ccr.2021.213887 pmid: 23549525 |
|
(d) Zhai X.-Y.; Wang X.-Q.; Wu B.; Zhou Y.-G. Chin. J. Chem. 2022, 40, 21.
doi: 10.1002/cjoc.v40.1 pmid: 23549525 |
|
(e) Jones R. G.; Ando W.; Chojnowski J. Silicon-Containing Polymers, Springer, Berlin, 2000.
pmid: 23549525 |
|
[3] |
(a) Langkopf E.; Schinzer D. Chem. Rev. 1995, 95, 1375.
doi: 10.1021/cr00037a011 pmid: 29039662 |
(b) Franz A. K.; Wilson S. O. J. Med. Chem. 2013, 56, 388.
doi: 10.1021/jm3010114 pmid: 29039662 |
|
(c) Fujii S.; Hashimoto Y. Future Med. Chem. 2017, 9, 485.
doi: 10.4155/fmc-2016-0193 pmid: 29039662 |
|
(d) Ramesh R.; Reddy D. S. J. Med. Chem. 2018, 61, 3779.
doi: 10.1021/acs.jmedchem.7b00718 pmid: 29039662 |
|
[4] |
(a) Remond E.; Martin C.; Martinez J.; Cavelier F. Chem. Rev. 2016, 116, 11654.
doi: 10.1021/acs.chemrev.6b00122 pmid: 19421578 |
(b) Mortensen M.; Husmann R.; Veri E.; Bolm C. Chem. Soc. Rev. 2009, 38, 1002.
doi: 10.1039/b816769a pmid: 19421578 |
|
[5] |
(a) Cheng C.; Hartwig J. F. Chem. Rev. 2015, 115, 8946.
doi: 10.1021/cr5006414 pmid: 25714857 |
(b) Xu Z.; Huang W.-S.; Zhang J.; Xu L.-W. Synthesis 2015, 47, 3645.
doi: 10.1055/s-00000084 pmid: 25714857 |
|
(c) Richter S. C.; Oestreich M. Trends Chem. 2020, 2, 13.
doi: 10.1016/j.trechm.2019.07.003 pmid: 25714857 |
|
(d) Li B.; Dixneuf P. H. Chem. Soc. Rev. 2021, 50, 5062.
doi: 10.1039/D0CS01392G pmid: 25714857 |
|
(e) Ge Y.; Huang X.; Ke J.; He C. Chem. Catal. 2022, 2, 2898.
pmid: 25714857 |
|
[6] |
(a) Troegel D.; Stohrer J. Coord. Chem. Rev. 2011, 255, 1440.
doi: 10.1016/j.ccr.2010.12.025 |
(b) Oestreich M. Angew. Chem., Int. Ed. 2016, 55, 494.
doi: 10.1002/anie.v55.2 |
|
[7] |
(a) Xu L.; Zhang S.; Li P. Org. Chem. Front. 2015, 2, 459.
doi: 10.1039/C5QO00012B |
(b) Zhang L.; Hang Z.; Liu Z.-Q. Angew. Chem., Int. Ed. 2016, 55, 236.
doi: 10.1002/anie.v55.1 |
|
(c) Yang Y.; Song R.-J.; Ouyang X.-H.; Wang C.-Y.; Li J.-H.; Luo S. Angew. Chem., Int. Ed. 2017, 56, 7916.
doi: 10.1002/anie.v56.27 |
|
(d) Zeng Y.; Liu X.-D.; Guo X.-Q.; Gu Q.-S.; Li Z.-L.; Chang X.-Y.; Liu X.-Y. Sci. China: Chem. 2019, 62, 1529.
|
|
(e) Zhang X.; Fang J.; Cai C.; Lu G. Chin. Chem. Lett. 2021, 32, 1280.
doi: 10.1016/j.cclet.2020.09.058 |
|
[8] |
(a) Hou J.; Ee A.; Cao H.; Ong H.-W.; Xu J.-H.; Wu J. Angew. Chem., Int. Ed. 2018, 57, 17220.
doi: 10.1002/anie.v57.52 |
(b) Li J.-S.; Wu J. ChemPhotoChem 2018, 2, 839.
doi: 10.1002/cptc.v2.10 |
|
(c) Yu X.; Luebbesmeyer M.; Studer A. Angew. Chem., Int. Ed. 2021, 60, 675.
doi: 10.1002/anie.v60.2 |
|
(d) Ren L.-Q.; Li N.; Ke J.; He C. Org. Chem. Front. 2022, 9, 6400.
doi: 10.1039/D2QO01387H |
|
(e) Fan X.; Zhang M.; Gao Y.; Zhou Q.; Zhang Y.; Yu J.; Xu W.; Yan J.; Liu H.; Lei Z.; Ter Y. C.; Chanmungkalakul S.; Lum Y.; Liu X.; Cui G.; Wu J. Nat. Chem. 2023, 15, 666.
doi: 10.1038/s41557-023-01155-8 |
|
[9] |
Hengge E.; Litscher G. Angew. Chem., Int. Ed. 1976, 15, 370.
|
[10] |
(a) Francke R.; Little R. D. Chem. Soc. Rev. 2014, 43, 2492.
doi: 10.1039/c3cs60464k pmid: 24500279 |
(b) Yan M.; Kawamata Y.; Baran P. S. Chem. Rev. 2017, 117, 13230.
doi: 10.1021/acs.chemrev.7b00397 pmid: 24500279 |
|
(c) Jiang Y.; Xu K.; Zeng C. Chem. Rev. 2018, 118, 4485.
doi: 10.1021/acs.chemrev.7b00271 pmid: 24500279 |
|
(d) Kaerkaes M. D. Chem. Soc. Rev. 2018, 47, 5786.
doi: 10.1039/C7CS00619E pmid: 24500279 |
|
(e) Okada Y.; Chiba K. Chem. Rev. 2018, 118, 4592.
doi: 10.1021/acs.chemrev.7b00400 pmid: 24500279 |
|
(f) Tang S.; Liu Y.; Lei A. Chem 2018, 4, 27.
doi: 10.1016/j.chempr.2017.10.001 pmid: 24500279 |
|
(g) Waldvogel S. R.; Lips S.; Selt M.; Riehl B.; Kampf C. J. Chem. Rev. 2018, 118, 6706.
doi: 10.1021/acs.chemrev.8b00233 pmid: 24500279 |
|
(h) Yang Q.-L.; Fang P.; Mei T.-S. Chin. J. Chem. 2018, 36, 338.
doi: 10.1002/cjoc.v36.4 pmid: 24500279 |
|
(i) Jiao K.-J.; Xing Y.-K.; Yang Q.-L.; Qiu H.; Mei T.-S. Acc. Chem. Res. 2020, 53, 300.
doi: 10.1021/acs.accounts.9b00603 pmid: 24500279 |
|
(j) Xiong P.; Xu H.-C. Acc. Chem. Res. 2019, 52, 3339.
doi: 10.1021/acs.accounts.9b00472 pmid: 24500279 |
|
[11] |
(a) Jouikov V. V. Russ. Chem. Rev. 1997, 66, 509.
doi: 10.1070/RC1997v066n06ABEH000251 |
(b) Fuchigami T. Electrochemistry of Organosilicon Compounds, In the Chemistry of Organic Silicon Compounds, Ed: Rappoport, Z.; Rappoport, Z.; Apeloig, Y. Wiley, Chichester, 1998.
|
|
(c) Beck A. D.; Haufe S.; Waldvogel S. R. ChemElectroChem 2023, 10, e202201149.
doi: 10.1002/celc.v10.4 |
|
(d) Kuciński K. Inorg. Chem. Front. 2023, 10, 1382.
doi: 10.1039/D2QI02713E |
|
[12] |
Kashimura S.; Ishifune M.; Yamashita N.; Bu H.-B.; Take- bayashi M.; Kitajima S.; Yoshiwara D.; Kataoka Y.; Nishida R.; Kawasaki S.-I.; Murase H.; Shono T. J. Org. Chem. 1999, 64, 6615.
doi: 10.1021/jo990180z |
[13] |
(a) Ishifune M.; Kashimura S.; Kogai Y.; Fukuhara Y.; Kato T.; Bu H.-B.; Yamashita N.; Murai Y.; Murase H.; Nishida R. J. Organomet. Chem. 2000, 611, 26.
doi: 10.1016/S0022-328X(00)00327-2 |
(b) Ishifune M.; Kogai Y.; Iijima H.; Kera Y.; Yamashita N.; Kashimura S. J. Macromol. Sci., Pure Appl. Chem. 2004, A41, 373.
|
|
(c) Ishifune M.; Kogai Y.; Iijima H.; Kera Y.; Yamashita N.; Kashimura S. Electrochemistry 2004, 72, 159.
doi: 10.5796/electrochemistry.72.159 |
|
[14] |
Aihara S.; Ishii R.; Fukuhara M.; Kamata N.; Terunuma D.; Hirano Y.; Saito N.; Aramata M.; Kashimura S. J. Non-Cryst. Solids 2001, 296, 135.
doi: 10.1016/S0022-3093(01)00923-1 |
[15] |
(a) Ishifune M.; Sana C.; Ando M.; Tsuyama Y. Polym. Int. 2011, 60, 1208.
doi: 10.1002/pi.v60.8 |
(b) Mavric A.; Badasyan A.; Mali G.; Valant M. Eur. Polym. J. 2017, 90, 162.
doi: 10.1016/j.eurpolymj.2017.03.018 |
|
[16] |
Guan W.; Lu L.; Jiang Q.; Gittens A. F.; Wang Y.; Novaes L. F. T.; Klausen R. S.; Lin S. Angew. Chem., Int. Ed. 2023, 62, e202303592.
doi: 10.1002/anie.v62.26 |
[17] |
Lu L.; Siu J. C.; Lai Y.; Lin S. J. Am. Chem. Soc. 2020, 142, 21272.
doi: 10.1021/jacs.0c10899 |
[18] |
Chen H.; Zhu C.; Yue H.; Rueping M. Angew. Chem., Int. Ed. 2023, 62, e202306498.
doi: 10.1002/anie.v62.33 |
[19] |
Liang H.; Wang L.-J.; Ji Y.-X.; Wang H.; Zhang B. Angew. Chem., Int. Ed. 2021, 60, 1839.
doi: 10.1002/anie.v60.4 |
[20] |
Ke J.; Liu W.; Zhu X.; Tan X.; He C. Angew. Chem., Int. Ed. 2021, 60, 8744.
doi: 10.1002/anie.v60.16 |
[21] |
Han P.; Yin M.; Li H.; Yi J.; Jing L.; Wei B. Adv. Synth. Catal. 2021, 363, 2757.
doi: 10.1002/adsc.v363.11 |
[22] |
Jiang C.; Liao Y.; Li H.; Zhang S.; Liu P.; Sun P. Adv. Synth. Catal. 2023, 365, 1205.
doi: 10.1002/adsc.v365.8 |
[23] |
Chen X.; Huang Y.-G.; Zhong W.-Q.; Huang J.-M. Org. Lett. 2023, 25, 4562.
doi: 10.1021/acs.orglett.3c01592 |
[24] |
Jiang Y.; Xu K.; Zeng C. CCS Chem. 2022, 4, 1796.
doi: 10.31635/ccschem.021.202101010 |
[25] |
Wan Q.; Hou Z.-W.; Zhao X.-R.; Xie X.; Wang L. Org. Lett. 2023, 25, 1008.
doi: 10.1021/acs.orglett.3c00144 |
[26] |
Biremond T.; Jubault P.; Poisson T. ACS Org. Inorg. Au 2022, 2, 148.
doi: 10.1021/acsorginorgau.1c00035 pmid: 36855456 |
[27] |
Aelterman M.; Biremond T.; Jubault P.; Poisson T. Chem.-Eur. J. 2022, 28, e202202194.
doi: 10.1002/chem.v28.66 |
[1] | Junjun Liu, Taotao Lu, Ping Ma, Qingyang Zhao, Fuk Yee Kwong. Palladium-Catalyzed C(sp3)—Si Bonds Transformation for Construct-ing Trifluoropropyl (Hetero)arenes through C(sp3)—C(sp2) Cross-Coupling Reactions [J]. Chinese Journal of Organic Chemistry, 2024, 44(4): 1319-1326. |
[2] | Xue Sun, Tingtao Yan, Kelu Yan, Jianjing Yang, Jiangwei Wen. Electrochemical Enabled Phosphorylation of α-Diazoester to Access Phosphinic Hydrazone [J]. Chinese Journal of Organic Chemistry, 2024, 44(3): 1013-1020. |
[3] | Jian Huang, Wenzhen Zhang. Advances in Electrochemical Cathodic Reductive Reactions Involving Carbon-Nitrogen Bonds [J]. Chinese Journal of Organic Chemistry, 2024, 44(3): 825-839. |
[4] | Yuanhang Chen, Jinyu He, Bo Zhang, Yanzhao Wang, Lingxuan Kong, Weifeng Qian, Na'na Wang, Wenxi Duan, Yanyan Ouyang, Cuiju Zhu, Hao Xu. Asymmetric Electrochemical Organic Synthesis [J]. Chinese Journal of Organic Chemistry, 2024, 44(3): 748-779. |
[5] | Zhang-Jian Li, Zhen-Hua Wang, Jian-Feng Guo, Ping Fang, Cong Ma, Run-Hua Liu, Tian-Sheng Mei. Electrochemistry-Enabled 2,2,6,6-Tetramethylpiperidoxyl (TEMPO)-Mediated Oxidative Dehydrogenation Povarov/Tandem Reactions of Glycine Derivatives [J]. Chinese Journal of Organic Chemistry, 2024, 44(3): 940-950. |
[6] | Aman Hasil, Rui Chang, Juntao Ye. Recent Advances on C—H Functionalization via Oxidative Electrophotocatalysis [J]. Chinese Journal of Organic Chemistry, 2024, 44(3): 728-747. |
[7] | Shuai Lv, Gangguo Zhu, Jinzhong Yao, Hongwei Zhou. Research Progress in Preparation of Carboxylic Acids by Electrochemical Mediated Oxidative Carboxylation and Reductive Carboxylation of Carbon Dioxide [J]. Chinese Journal of Organic Chemistry, 2024, 44(3): 780-808. |
[8] | Lan Zhou, Hong He, De-Qiao Yang, Zhong-Wei Hou, Lei Wang. Electrochemical Trifluoromethylation/Spirocyclization of N-Benzylacrylamides to Construct Trifluoromethylated 2-Azaspiro[4.5]decanes [J]. Chinese Journal of Organic Chemistry, 2024, 44(3): 981-988. |
[9] | Jiwei Wu, Jun He, Jingjing Wang, Lixia Li, Caiyu Xu, Jie Zhou, Zirong Li, Huajian Xu. Electrochemical Oxidation Decarboxylative Cyclization of α-Keto Acid with o-Aminobenzylamine [J]. Chinese Journal of Organic Chemistry, 2024, 44(3): 972-980. |
[10] | Zile Zhu, Pengfei Li, Youai Qiu. Recent Advance in Electrochemical C(sp2)—H Amination of Arenes [J]. Chinese Journal of Organic Chemistry, 2024, 44(3): 871-891. |
[11] | Hongbing Chen, Sijia Yang, Zhipeng Ye, Kai Chen, Haoyue Xiang, Hua Yang. Electrocatalytic Reduction of Quinolines and Ketones by Using Lewis Base-Ligated Borane as a Hydrogen Donor [J]. Chinese Journal of Organic Chemistry, 2024, 44(3): 966-971. |
[12] | Xinyue Fang, Yawen Huang, Xinwei Hu, Zhixiong Ruan. Recent Progress in Electrochemical Modification of Amino Acids and Peptides [J]. Chinese Journal of Organic Chemistry, 2024, 44(3): 903-926. |
[13] | Mengfan Li, Xu Cheng. Chemoselective Electro-oxidation of Allyl Arene to Ester [J]. Chinese Journal of Organic Chemistry, 2024, 44(3): 1005-1012. |
[14] | Xiaotong Gao, Yuqing Zhong, Nan Feng, Ying Sun, Deyong Yang, Feng Zhou. Recent Advances in Electrochemical Carboxylation of Inert Chemical Bonds with Carbon Dioxide [J]. Chinese Journal of Organic Chemistry, 2024, 44(10): 3043-3062. |
[15] | Qiuting Zhao, Wenguang Wang. Iron-Catalyzed Selective Hydrogenation and Hydroboration/Hydrosilylation of CO2 [J]. Chinese Journal of Organic Chemistry, 2024, 44(10): 3106-3116. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||