REVIEW

Research Progress on Copper-Catalyzed Asymmetric Synthesis of Chiral Organophosphorus Compounds

  • Hui Li ,
  • Liang Yin
Expand
  • a Department of Applied Chemistry, Yuncheng University, Yuncheng, Shanxi 044000
    b Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032
*Corresponding authors. E-mail:;

Received date: 2024-05-05

  Revised date: 2024-06-11

  Online published: 2024-07-10

Supported by

Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province(2022L478); Natural Science Foundation of Shanxi Province(202303021211189)

Abstract

Chiral organophosphorus compounds have a wide range of application in the fields of medicine, pesticides, and functional materials, and also serve as versatile ligands or organocatalysts in asymmetric catalysis. Therefore, their asymmetric synthesis has attracted an increasing attention from chemists and has become one hot research topic in recent years. Asymmetric P—C or P—N bond formation by using organophosphorus compounds bearing P—H bond and various electrophilic partners serves as a straightforward and powerful strategy for constructing chiral organophosphorus compounds. The recent progress in asymmetric synthesis of chiral organophosphorus compounds catalyzed by chiral copper complexes or copper/organocatalyst co-catalytic systems is summarized. P-Chiral or/and backbone chiral organophosphorus compounds were obtained in these reactions. This paper is divided into two sections based on whether the valence state of copper is changed or not during the reaction process. Aside from the substrate scopes, the mechanisms and potential applications of some representative methodologies are also included.

Cite this article

Hui Li , Liang Yin . Research Progress on Copper-Catalyzed Asymmetric Synthesis of Chiral Organophosphorus Compounds[J]. Chinese Journal of Organic Chemistry, 2024 , 44(12) : 3575 -3586 . DOI: 10.6023/cjoc202405002

References

[1]
(a) Mucha A.; Kafarski P.; Berlicki L. J. Med. Chem. 2011, 54, 5955.
[1]
(b) Horsman G. P.; Zechel D. L. Chem. Rev. 2017, 117, 5704.
[1]
(c) Kahler J. P.; Verhelst S. H. L. RSC Chem. Biol. 2021, 2, 1285.
[1]
(d) Stieger C. E.; Franz L.; K?rlin F.; Hackenberger C. P. R. Angew. Chem., Int. Ed. 2021, 60, 15359.
[2]
(a) Chew R. J.; Leung P.-H. Chem. Rec. 2016, 16, 141.
[2]
(b) Li Z.; Duan W. Chin. J. Org. Chem. 2016, 36, 1805 (in Chinese).
[2]
(李振, 段伟良, 有机化学, 2016, 36, 1805.)
[2]
(c) Cain M. F.; Hughes R. P.; Glueck D. S.; Golen J. A.; Moore C. E.; Rheingold A. L. Inorg. Chem. 2010, 49, 7650.
[2]
(d) Glueck D. S. Dalton Trans. 2008, 5276.
[2]
(e) Wang G.; Gibbons S. K.; Glueck D. S.; Sibbald C.; Fleming J. T.; Higham L. J.; Rheingold A. L. Organometallics 2018, 37, 1760.
[3]
Gibbons S. K.; Valleau C. R.; Peltier J. L.; Cain M. F.; Hughes R. P.; Glueck D. S.; Golen J. A.; Rheingold A. L. Inorg. Chem. 2019, 58, 8854.
[4]
Gallant S. K.; Tipker R. M.; Glueck D. S. Organometallics 2022, 41, 1721.
[5]
Chen Y.-R.; Feng J.-J.; Duan W.-L. Tetrahedron Lett. 2014, 55, 595.
[6]
Matsunaga S.; Kinoshita T.; Okada S.; Harada S.; Shibasaki M. J. Am. Chem. Soc. 2004, 126, 7559.
[7]
Chew R. J.; Lu Y.; Jia Y.-X.; Li B.-B.; Wong E. H. Y.; Goh R.; Li Y.; Huang Y.; Pullarkat S. A.; Leung P.-H. Chem.-Eur. J. 2014, 20, 14514.
[8]
Li Y.-B.; Tian H.; Yin L. J. Am. Chem. Soc. 2020, 142, 20098.
[9]
Wang Y.; Wang Z.-Q.; Yin L. Synthesis 2023, 55, 2228.
[10]
Xie J.-H.; Zhu S.-F.; Zhou Q.-L. Chem. Rev. 2011, 111, 1713.
[11]
(a) Fryzuk M. D.; Bosnich B. J. Am. Chem. Soc. 1977, 99, 6262.
[11]
(b) Fryzuk M. D.; Bosnich B. J. Am. Chem. Soc. 1978, 100, 5491.
[11]
(c) Nagel U. Angew. Chem., Int. Ed. 1984, 23, 435.
[11]
(d) Burk M. J. Acc. Chem. Res. 2000, 33, 363.
[12]
Zhang Y.; Zhang F.; Chen L.; Xu J.; Liu X.; Feng X. ACS Catal. 2019, 9, 4834.
[13]
Yue W.-J.; Xiao J.-Z.; Zhang S.; Yin L. Angew. Chem., Int. Ed. 2020, 59, 7057.
[14]
(a) Yin L.; Takada H.; Lin S.; Kumagai N.; Shibasaki M. Angew. Chem., Int. Ed. 2014, 53, 5327.
[14]
(b) Ogawa T.; Kumagai N.; Shibasaki M. Angew. Chem., Int. Ed. 2012, 51, 8551.
[14]
(c) Yanagida Y.; Yazaki R.; Kumagai N.; Shibasaki M. Angew. Chem., Int. Ed. 2011, 50, 7910.
[14]
(d) Yazaki R.; Kumagai N.; Shibasaki M. J. Am. Chem. Soc. 2010, 132, 10275.
[15]
Yang Q.; Zhou J.; Wang J. Chem. Sci. 2023, 14, 4413.
[16]
(a) Helmchen G.; Pfaltz A. Acc. Chem. Res. 2000, 33, 336.
[16]
(b) Carroll M. P.; Guiry P. J. Chem. Soc. Rev. 2014, 43, 819.
[16]
(c) Rokade B. V.; Guiry P. J. ACS Catal. 2018, 8, 624.
[17]
Zhang Y.; Zhu S. Acta Chim. Sinica 2023, 81, 777 (in Chinese).
[17]
(张艳东, 朱守非, 化学学报, 2023, 81, 777.)
[18]
Zhang S.; Jiang N.; Xiao J.-Z.; Lin G.-Q.; Yin L. Angew. Chem., Int. Ed. 2023, 62, e202218798.
[19]
Daniels B. S.; Hou X.; Corio S. A.; Weissman L. M.; Dong V. M.; Hirschi J. S.; Nie S. Angew. Chem., Int. Ed. 2023, 62, e202306511.
[20]
(a) Dian L.; Marek I. Chem. Rev. 2018, 118, 8415.
[20]
(b) Raiguru B. P.; Nayak S.; Mishra D. R.; Das T.; Mohapatra S.; Mishra N. P. Asian J. Org. Chem. 2020, 9, 1088.
[21]
Yu Y.-N.; Xu M.-H. Acta Chim. Sinica 2017, 75, 655 (in Chinese).
[21]
(于月娜, 徐明华, 化学学报, 2017, 75, 655.)
[22]
(a) Miyashita A.; Yasuda A.; Takaya H.; Toriumi K.; Ito T.; Souchi T.; Noyori R. J. Am. Chem. Soc. 1980, 102, 7932.
[22]
(b) Uozumi Y.; Hayashi T. J. Am. Chem. Soc. 1991, 113, 9887.
[22]
(c) Alcock N. W.; Brown J. M.; Hulmes D. I. Tetrahedron: Asymmetry 1993, 4, 743.
[23]
Cai B.; Cui Y.; Zhou J.; Wang Y.-B.; Yang L.; Tan B.; Wang J. Angew. Chem., Int. Ed. 2023, 62, e202215820.
[24]
Zhang S.; Xiao J.-Z.; Li Y.-B.; Shi C.-Y.; Yin L. J. Am. Chem. Soc. 2021, 143, 9912.
[25]
Beaud R.; Phipps R. J.; Gaunt M. J. J. Am. Chem. Soc. 2016, 138, 13183.
[26]
Al-Masum M.; Kumaraswamy G.; Livinghouse T. J. Org. Chem. 2000, 65, 4776.
[27]
(a) Luan C.; Yang C.-J.; Liu L.; Gu Q.-S.; Liu X.-Y. Chem Catalysis 2022, 2, 2876.
[27]
(b) Moncarz J. R.; Laritcheva N. F.; Glueck D. S. J. Am. Chem. Soc. 2002, 124, 13356.
[27]
(c) Korff C.; Helmchen G. Chem. Commun. 2004, 530.
[27]
(d) Zhang Y.; He H.; Wang Q.; Cai Q. Tetrahedron Lett. 2016, 57, 5308.
[27]
(e) Dai Q.; Li W.; Li Z.; Zhang J. J. Am. Chem. Soc. 2019, 141, 20556.
[28]
Bhat V.; Welin E. R.; Guo X. L.; Stoltz B. M. Chem. Rev. 2017, 117, 4528.
[29]
Li Y.; Jin X.; Liu P.; Zhang H.; Yu X.; Liu Y.; Liu B.; Yang W. Angew. Chem., Int. Ed. 2022, 61, e202117093.
[30]
Liu B.; Liu P.; Wang X.; Feng F.; Wang Z.; Yang W. Org. Lett. 2023, 25, 2178.
[31]
Kang J.; Ding K.; Ren S.-M.; Su B. Angew. Chem., Int. Ed. 2023, 62, e202301628.
[32]
Zhang X.; Tan C.-H. Chem 2021, 7, 1451.
[33]
(a) Zhou H.; Li Z.-L.; Gu Q.-S.; Liu X.-Y. ACS Catal. 2021, 11, 7978.
[33]
(b) Gu Q.-S.; Li Z.-L.; Liu X.-Y. Acc. Chem. Res. 2020, 53, 170.
[33]
(c) Zhang C.; Li Z.-L.; Gu Q.-S.; Liu X.-Y. Nat. Commun. 2021, 12, 475.
[34]
Wang L.-L.; Zhou H.; Cao Y.-X.; Zhang C.; Ren Y.-Q.; Li Z.-L.; Gu Q.-S.; Liu X.-Y. Nat. Synth. 2023, 2, 430.
[35]
Ye J.-J.; Nie S.-Z.; Wang J.-P.; Wen J.-H.; Zhang Y.; Qiu M.-R.; Zhao C.-Q. Org. Lett. 2017, 19, 5384.
[36]
Li Y.-B.; Tian H.; Zhang S.; Xiao J.-Z.; Yin L. Angew. Chem., Int. Ed. 2022, 61, e202117760.
Outlines

/