化学学报 ›› 2020, Vol. 78 ›› Issue (12): 1309-1335.DOI: 10.6023/A20080359 上一篇    下一篇

综述

多孔氢键有机框架(HOFs):现状与挑战

林祖金a,b, 曹荣b   

  1. a 福建农林大学 生命科学学院应用化学系 福州 350002;
    b 中国科学院福建物质结构研究所 结构化学国家重点实验室 福州 350002
  • 投稿日期:2020-08-12 发布日期:2020-09-04
  • 通讯作者: 林祖金, 曹荣 E-mail:linzujin@fafu.edu.cn;rcao@fjirsm.ac.cn
  • 作者简介:林祖金,福建农林大学生命科学学院副教授、硕士生导师.2012年7月于中国科学院福建物质结构研究所无机化学专业取得理学博士学位.随后,留所参加工作并于2015年晋升为副研究员.2015年11月加入福建农林大学生命科学学院应用化学系.2019年10月赴德州大学圣安东尼奥分校陈邦林课题组访学.主要的研究方向为功能多孔MOFs和HOFs的设计合成及其应用.
    曹荣,中国科学院福建物质结构研究所研究员、博士生导师,国家自然科学基金杰出青年科学基金获得者.长期从事金属-有机框架(MOFs)和多孔氢键有机框架(HOFs)材料的设计合成及其在气体吸附与分离、催化和荧光传感等领域的研究.
  • 基金资助:
    项目受国家自然科学基金(No.21520102001)、福建省自然科学基金(No.2020J01549)和福建农林大学(Nos.118360020,XJQ201616)资助.

Porous Hydrogen-bonded Organic Frameworks (HOFs): Status and Challenges

Lin Zu-Jina,b, Cao Rongb   

  1. a Department of Applied Chemistry, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
    b State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
  • Received:2020-08-12 Published:2020-09-04
  • Supported by:
    Project supported by the National Natural Science Foundation of China (No. 21520102001), Natural Science Foundation of Fujian Province of China (No. 2020J01549), and Fujian Agriculture and Forestry University (Nos. 118360020, XJQ201616).

氢键有机框架(HOFs)已经发展成为一类独特的晶态多孔材料,它一般是由有机或金属-有机构建单元通过分子间的氢键相互连接而形成的框架材料.由于氢键强度弱和柔性强,因此大部分HOFs的框架都比较容易坍塌.然而,通过合理地选择刚性且具有特定几何构型的构建单元、引入穿插或π-π作用和静电作用等其它分子间的作用力,稳定且多孔的HOFs也逐渐地被制备出来.与其它含有机组分的晶态多孔材料如金属-有机框架(MOFs)和共价有机框架(COFs)相比,HOFs具有自己的特点,例如:温和的合成条件、高度的结晶性、溶剂加工性、容易修复和再生等.HOFs的这些特点能够使其成为一类独特的功能多孔材料.本综述主要概述了稳定且多孔HOFs设计的一些基本原则,系统总结了构筑HOFs常用的超分子合成子以及脚手架,重点综述了近十年HOFs在气体吸附与分离、质子传导、异相催化、荧光和传感、生物应用、对映体拆分和芳香化合物的分离、环境污染物去除和有机结构测定等领域的重要进展.

关键词: 氢键有机框架, 超分子合成子, 氢键, 结构设计, 永久多孔性

Hydrogen-bonded organic frameworks (HOFs), usually self-assembled by organic or metal-organic building blocks via intermolecular H-bonding interactions, have become a unique type of crystalline porous material. Although the weak and flexible nature of hydrogen bonds makes most HOFs fragile, the high stability and permanent porosity could be realized by the judicious selection of rigid building blocks with special spatial configuration as well as the introduction of framework interpenetration and/or other intermolecular interactions like π-π stacking and electrostatic interactions, etc. Compared with other crystalline porous materials like metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs), HOFs feature mild preparation condition, high crystallinity, permissible solution processability, easy healing and regeneration, etc. These distinguishing merits make HOFs capable to be used as unique multifunctional porous materials. Herein, we first review the basic rules to design and synthesize stable and porous HOFs, and then systematically summarize the representative supramolecular synthons and backbones that have been used to build stable and porous HOFs. Emphasis is put on the potential applications of HOFs in gas adsorption and separation, proton conduction, heterogeneous catalysis, luminescence and sensing, biological applications, enantiomeric resolution and aromatic compounds separation, pollutants removal, and structure determination, etc.

Key words: hydrogen-bonded organic framework (HOF), supramolecular synthon, hydrogen bond, structural design, permanent porosity