化学学报 ›› 2022, Vol. 80 ›› Issue (1): 80-88.DOI: 10.6023/A21100469 上一篇    下一篇

所属专题: 中国科学院青年创新促进会合辑

综述

基于纳米光子技术检测SARS-CoV-2研究进展

杨旭a,b, 张泽英a,b, 苏萌a,b,*(), 宋延林a,b,*()   

  1. a中国科学院化学研究所绿色印刷重点实验室 北京 100190
    b中国科学院大学 北京 100049
  • 投稿日期:2021-10-21 发布日期:2021-12-23
  • 通讯作者: 苏萌, 宋延林
  • 作者简介:

    杨旭, 博士研究生. 2020年7月于中国科学院大学获理学学士学位. 现为中国科学院化学研究所宋延林研究员课题组直博生, 研究方向为微纳结构的绿色印刷与生物标志物的灵敏检测.

    张泽英, 2016年于兰州大学获得学士学位, 2021年于中科院化学所获得博士学位. 目前在中科院化学所宋延林研究员课题组开展博士后研究, 主要从事于微纳结构的精细组装及其光学性质探究和生物检测.

    苏萌, 博士, 中国科学院化学研究所副研究员, 北京市科技新星, 中国科学院青年创新促进会会员. 2017年在中国科学院化学研究所获得博士学位, 同年入选“博士后创新人才支持计划”, 现任中国科学院化学研究所副研究员. 提出了墨滴调控自成形的印刷微纳图案化方法, 实现了纳米级图案和器件的印刷制造. 已发表学术论文70余篇, 申请/授权发明专利15项, 参与起草制定国际标准1项.

    宋延林, 中国科学院化学研究所研究员、绿色印刷重点实验室主任、博士生导师, 中国科学院大学长江学者特聘教授, 杰青. 主要从事光电功能材料、纳米材料与绿色印刷技术研究. 已发表SCI 收录论文400余篇, 被他人引用20,000余次, 并多次被Nature, Science 等作为研究亮点报道. 主持和参加编写英文专著10 部, 中文专著2部; 获授权中国发明专利100余项, 美国、日本、欧盟、韩国等授权发明专利26项.

    庆祝中国科学院青年创新促进会十年华诞.
  • 基金资助:
    项目受国家重点研发计划(2018YFA0208501); 国家自然科学基金(51803217); 国家自然科学基金(51773206); 国家自然科学基金(91963212); 国家自然科学基金(51961145102); 国家自然科学基金(22075296); 中国科学院青年创新促进会(2020032); 北京分子科学国家研究中心(BNLMS-CXXM-202005); 北京市科技新星计划(Z201100006820037); 北京市科技新星计划(Z211100002121001)

Research Progress on Nano Photonics Technology-based SARS-CoV-2 Detection

Xu Yanga,b, Zeying Zhanga,b, Meng Sua,b(), Yanlin Songa,b()   

  1. aKey Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing 100190, China
    bUniversity of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2021-10-21 Published:2021-12-23
  • Contact: Meng Su, Yanlin Song
  • About author:
    Dedicated to the 10th anniversary of the Youth Innovation Promotion Association, CAS.
  • Supported by:
    National Key R&D Program of China(2018YFA0208501); National Natural Science Foundation of China(51803217); National Natural Science Foundation of China(51773206); National Natural Science Foundation of China(91963212); National Natural Science Foundation of China(51961145102); National Natural Science Foundation of China(22075296); Youth Innovation Promotion Association CAS(2020032); Beijing National Laboratory for Molecular Sciences(BNLMS-CXXM-202005); Beijing Nova Program from Beijing Municipal Science & Technology Commission(Z201100006820037); Beijing Nova Program from Beijing Municipal Science & Technology Commission(Z211100002121001)

新型冠状病毒(SARS-CoV-2)的大规模爆发导致全球性大面积人员感染甚至死亡, 严重影响了人们的正常生活. 全球化贸易和便捷交通极大加速了疫情的传播速度, 使疫情防控困难重重. 因此, 快速准确地诊断感染者和筛查无症状感染者有重要意义. 目前使用最广泛的SARS-CoV-2检测方法是逆转录聚合酶链式反应(Reverse Transcription- Polymerase Chain Reaction, RT-PCR), 但是存在样品储运繁琐、检测步骤复杂等问题, 需要专业人员和设备, 难以满足疫情常态化形势下快速、简便、高效、大规模检测的要求. 近年来, 随着纳米光子学的快速发展和纳米制备技术的不断完善, 基于纳米光子学技术检测生物标志物的研究已成为新的研究热点. 最新研究的利用纳米光子结构检测生物标志物新方法, 包括表面等离子共振(Surface Plasmon Resonance, SPR)、表面增强拉曼散射(Surface Enhanced Raman Scattering, SERS)、回音壁模式(Whispering Gallery Mode, WGM)与比色法, 特异性强、检测速度快、简单高效. 这些检测技术为高灵敏快速生物检测提供了新的平台. 本综述对近年来发展的纳米光子学生物检测技术进行了总结与概述, 阐述了纳米光子学检测生物标志物的机制, 并分析其用于SARS-CoV-2检测的可能性. 针对目前纳米光子结构制造困难的问题, 提出了利用纳米绿色印刷微纳制造技术大面积制备纳米光子结构的新思路, 为实现疫情的精准有效防控提供理论和技术基础.

关键词: 纳米光子学, 生物标志物检测, SARS-CoV-2, 纳米绿色印刷

The worldwide outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in the infection even death of people all over the world, which has gravely affected our daily life. Globalization of trade and convenient transportation immensely accelerate the propagation of the epidemic, which brings severe difficulties to prevent the epidemic. Therefore, rapid and accurate diagnosis of infected persons and screening of asymptomatic persons play an important role. At present, the most widely used method for the detection of SARS-CoV-2 is reverse transcription-polymerase chain reaction (RT-PCR), which still has some problems including complicated sample storage and transportation, complex operations and so on. These shortcomings cause the hindrances to achieve fast, simple, efficient diagnostic testing under the normalization of the epidemic. In the past few years, with the development of nanotechnology, bio-sensing methods based on nano photonics have become a research hotspot. Label-free optical methods have been widely explored for bio-sensing including virus detection, such as surface plasmon resonance (SPR), surface enhanced Raman scattering (SERS), whispering gallery mode (WGM) and colorimetry. These approaches offer available alternatives to improve the speed, sensitivity, and accuracy of optical bio-sensing, owing to the enhanced interaction between the nanostructure and the biomarkers. This review summarizes these nano photonics-based bio-sensing technologies for the detection of SARS-CoV-2. Moreover, the detection mechanism of biomarkers by nano photonics is explained, and the further development trends are discussed. In view of the difficulties in manufacturing nano photonics structures, a new strategy of large-area preparation of nano photonics structures using nano green printing technology is proposed, which provides theoretical and technical support for accurate and effective prevention and control of the epidemic diseases.

Key words: nano photonics, biomarkers detection, SARS-CoV-2, nano green printing