化学学报 ›› 2022, Vol. 80 ›› Issue (4): 485-493.DOI: 10.6023/A21120600 上一篇    下一篇

研究论文

电/离子导体双包覆的LiNi0.8Co0.1Mn0.1O2锂离子电池阴极材料及其电化学性能

陈守潇a, 刘君珂a, 郑伟琛b, 魏国祯c, 周尧a, 李君涛a,*()   

  1. a 厦门大学能源学院 厦门 361102
    b 厦门大学化学与化工学院 厦门 361005
    c 厦门厦钨新能源材料股份有限公司 厦门 361026
  • 投稿日期:2021-12-30 发布日期:2022-04-28
  • 通讯作者: 李君涛
  • 基金资助:
    厦门市重大科技项目(3502Z20201012)

Electron/ion Conductor Double-coated LiNi0.8Co0.1Mn0.1O2 Li-ion Battery Cathode Material and Its Electrochemical Performance

Shouxiao Chena, Junke Liua, Weichen Zhengb, Guozhen Weic, Yao Zhoua, Juntao Lia()   

  1. a College of Energy, Xiamen University, Xiamen 361102, China
    b College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
    c Xiamen Tungsten Co., Ltd., Xiamen 361026, China
  • Received:2021-12-30 Published:2022-04-28
  • Contact: Juntao Li
  • Supported by:
    Xiamen Science and Technology Project(3502Z20201012)

高镍三元材料LiNi0.8Co0.1Mn0.1O2 (NCM)比容量高且成本低, 但材料结构在电化学循环过程中的不稳定性影响了其大规模的应用, 可采用表面包覆的策略来改善材料的结构稳定性, 从而提高其电化学性能. 本工作结合高速固相包覆法和高温烧结法, 分别将电子导体氧化锡锑(ATO)和锂离子导体偏磷酸锂(LOP)共同包覆在NCM材料表面. 双包覆后的NCM材料的电子电导率从2.17×10-3 Ѕ•cm-1提高至1.02×10-2 Ѕ•cm-1, 锂离子扩散系数也从7.05×10-9 cm2•s-1提高至2.88×10-8 cm2•s-1. 同时, NCM表面的双包覆层可以在循环过程中阻止电极材料与电解液发生氧化还原反应, 抑制材料不利相变, 减少氧的析出, 稳定材料结构. 电化学性能测试表明, 经过表面包覆后, NCM材料在1 C (180 mA•g-1)的电流下和2.7~4.3 V (vs. Li/Li+)的电压范围内, 循环150周后容量为161.1 mAh•g-1, 保持率为87.1%, 而在10 C的充放电倍率下具有133 mAh•g-1的可逆比容量.

关键词: 锂离子电池, 富镍阴极材料, 电子导体, 锂离子导体, 快速充电

The Ni-rich layered cathode material LiNi0.8Co0.1Mn0.1O2 presents a high specific capacity and relatively low cost, however, the inherent structure instability during the electrochemical cycling process hinders its application widely. Universally, the strategy of surface coating can be used to improve the structural stability of the material and then improve its electrochemical performance. This work combines the high-speed solid-phase coating method and the high-temperature sintering method to coat the electronic conductor antimony tin oxide and lithium-ion conductor lithium metaphosphate on the surface of the LiNi0.8Co0.1Mn0.1O2 material, respectively. The electron/ion conductor double coating layer forms a charge conversion and transport channel on the surface of the LiNi0.8Co0.1Mn0.1O2. The electronic conductivity of the double-coated LiNi0.8Co0.1Mn0.1O2 material increased from 2.17×10-3 Ѕ•cm-1 to 1.02×10-2 Ѕ•cm-1, and the diffusion coefficient of lithium-ion also increased from 7.05×10-9 cm2•s-1 to 2.88×10-8 cm2•s-1. At the same time, due to strong P—O bonds and stable metal oxides, the double-coating layer on the surface of the LiNi0.8Co0.1Mn0.1O2 material can effectively restrain the irreversible phase transitions, and it also can inhibit the interfacial reactions under high electrode potential. The electrochemical performance test demonstrated that the cyclability and rate performance of LiNi0.8Co0.1Mn0.1O2 material improved due to surface modification. The cathode assembled with double-coated LiNi0.8Co0.1Mn0.1O2 material can maintain a reversible capacity of 161.1 mAh•g-1 after 150 cycles at 1 C (after being activated at 0.1 C for two cycles, 1 C=180 mA•g-1) during 2.7~4.3 V (vs. Li/Li+), with a capacity retention of 87.1%. This coated LiNi0.8Co0.1Mn0.1O2 material also displays a specific capacity as high as 133 mAh•g-1 at 10 C. In comparison, the pristine LiNi0.8Co0.1Mn0.1O2 delivers a capacity of only 113 mAh•g-1 after 100 cycles and a reversible capacity retention rate of less than 60% (a decay rate of 0.4% per cycle).

Key words: lithium-ion battery, nickel-rich cathode material, electronic conductor, lithium-ion conductor, fast charging