化学学报 ›› 2019, Vol. 77 ›› Issue (1): 24-40.DOI: 10.6023/A18070272 上一篇    下一篇

综述

锂离子电池硅基负极粘结剂发展现状

王晓钰, 张渝, 马磊, 魏良明   

  1. 教育部薄膜与微细加工重点实验室 上海交通大学电子信息与电气工程学院微纳电子学系 上海 200240
  • 投稿日期:2018-07-16 发布日期:2018-08-31
  • 通讯作者: 魏良明 E-mail:lmwei@sjtu.edu.cn
  • 作者简介:魏良明,男,1974年生,研究员.2004年在中科院长春应用化学研究所获得高分子化学与物理专业博士学位,同年进入上海交通大学电子信息与电气工程学院微纳电子学系工作至今.主要从事新一代高性能锂离子电池/超级电容器以及传感器的研究;王晓钰,女,1995年生,硕士生.2013年于电子科技大学微电子与固体电子学院攻读学士学位,2017年进入上海交通大学电子信息与电气工程学院微纳电子学系攻读硕士学位,主要进行锂离子电池与电池粘结剂的研究.
  • 基金资助:

    项目受国家自然科学基金(No.51272155)资助.

Recent Development on Binders for Silicon-Based Anodes in Lithium-Ion Batteries

Wang Xiaoyu, Zhang Yu, Ma Lei, Wei Liangming   

  1. Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Department of Microelectronics and Nanoscience, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2018-07-16 Published:2018-08-31
  • Contact: 10.6023/A18070272 E-mail:lmwei@sjtu.edu.cn
  • Supported by:

    Project supported by the National Natural Science Foundation of China (No. 51272155).

在锂离子电池负极材料的研究中,硅材料以其高达4200 mAh·g-1的理论比容量,成为近年来新能源电池领域的研究热点.但是在锂化/去锂化过程中,硅负极体积变化高达300%,导致快速的容量衰减和较短的循环寿命.目前硅负极改性最有效的方法之一,是通过粘结剂来保持活性物质、导电添加剂和集流体间的接触完整性,减少硅材料在充放电循环过程中体积变化引起的裂化和粉碎,保持硅负极的高容量,提升电池循环性能.基于硅材料作为锂离子电池负极的优异特性,以及目前锂离子电池粘结剂的发展,将针对锂离子电池硅基负极粘结剂做出系统讨论,描述不同粘结剂对电池性能的主要影响,为锂离子电池硅基负极粘结剂的开发和应用提供研究方向.

关键词: 锂离子电池, 负极材料, 硅负极, 粘结剂

In the area of novel power sources, silicon anode in lithium-ion battery, with an ultrahigh theoretical specific capacity of 4200 mAh·g-1, has drawn numerous attentions and got to highlighting spot. Nevertheless, it suffers rapid capacity loss and short cyclability ascribed to the huge volume change during lithiation/delithiation process. So far, one of the most effective methods to ameliorate performances of silicon anode is to modify binders. In this way, the contact integrity among active materials, conductive additives and current collectors can be maintained, which may weaken the cracking and pulverization, keep high specific capacity as well as strengthen the cyclability of silicon anode. Considering both the advantages of silicon anode and the developments of binders, a review on silicon anode in lithium-ion battery will be demonstrated systematically. Besides, we describe the main effects of binders against battery performances. We hope that our review would provide research directions in the developments and applications of binders used in silicon anode of lithium-ion battery.

Key words: lithium-ion batteries, anode materials, silicon anodes, binder