化学学报 ›› 2022, Vol. 80 ›› Issue (9): 1277-1288.DOI: 10.6023/A22040186 上一篇 下一篇
研究论文
程敏, 王诗慧, 罗磊, 周利, 毕可鑫, 戴一阳, 吉旭*()
投稿日期:
2022-04-24
发布日期:
2022-07-14
通讯作者:
吉旭
基金资助:
Min Cheng, Shihui Wang, Lei Luo, Li Zhou, Kexin Bi, Yiyang Dai, Xu Ji()
Received:
2022-04-24
Published:
2022-07-14
Contact:
Xu Ji
Supported by:
文章分享
相比于传统热驱动的低温蒸馏工艺, 基于金属有机框架(Metal-organic frameworks, MOFs)的膜分离是一种在技术和成本上可行的乙烷/乙烯分离替代方案. 为了加速MOF膜在这一气体分离领域中的应用, 本工作提出了两步筛选策略对12,020个真实MOF膜材料进行了大规模计算筛选, 其中MISQIQ04表现出最高的乙烷/乙烯膜选择系数(4.16)和较高的乙烷渗透率(4.35×105 Barrer). 通过结构-性能关系分析, 可以发现窄孔径和低孔隙率的MOFs是选择性分离乙烷的最佳膜材料, 并且乙烷的选择性吸附对乙烷/乙烯膜分离过程起着主导作用. 与传统计算筛选方法相比, 本工作所提出的筛选策略降低了约87.1%的计算时间成本. 为了进一步缩短模拟时间, 本工作还开发了机器学习分类模型以实现对高性能MOF膜的快速预筛选并探讨了该模型的可移植性. 结果表明, 增加数据集的多样性有助于提高所开发模型的可移植性和泛化能力.
程敏, 王诗慧, 罗磊, 周利, 毕可鑫, 戴一阳, 吉旭. 面向乙烷/乙烯分离的金属有机框架膜的大规模计算筛选[J]. 化学学报, 2022, 80(9): 1277-1288.
Min Cheng, Shihui Wang, Lei Luo, Li Zhou, Kexin Bi, Yiyang Dai, Xu Ji. Large-Scale Computational Screening of Metal-Organic Framework Membranes for Ethane/Ethylene Separation[J]. Acta Chimica Sinica, 2022, 80(9): 1277-1288.
MOF | LCD/nm | PLD/nm | VF | $N_{C_{2}H_{6}}^{B}$/(mol•kg-1) | $D_{C_{2}H_{6}}^{B}$/(m2•s-1) | $S_{ads,C_{2}H_{6}/C_{2}H_{4}}^{B}$ | $S_{mem,C_{2}H_{6}/C_{2}H_{4}}^{B}$ | $P_{C_{2}H_{6}}^{B}$/Barrer |
---|---|---|---|---|---|---|---|---|
MISQIQ04 | 0.424 | 0.408 | 0.37 | 0.67 | 2.77×10-9 | 3.79 | 4.16 | 4.35×105 |
LURRUM | 0.847 | 0.738 | 0.60 | 1.30 | 3.09×10-10 | 2.55 | 3.67 | 1.11×105 |
UVINAP | 0.433 | 0.386 | 0.44 | 0.15 | 2.61×10-8 | 1.32 | 3.39 | 6.49×105 |
SUSZIQ | 0.629 | 0.533 | 0.43 | 0.42 | 2.96×10-10 | 2.43 | 3.32 | 3.06×104 |
ZERQOE | 0.450 | 0.403 | 0.34 | 0.26 | 5.43×10-9 | 1.85 | 2.86 | 2.24×105 |
QUXRIM | 0.475 | 0.431 | 0.34 | 0.32 | 2.54×10-9 | 2.11 | 2.63 | 1.30×105 |
GANBAZ01 | 0.576 | 0.452 | 0.65 | 1.14 | 8.33×10-12 | 1.41 | 2.32 | 2.40×103 |
PARMIG | 0.462 | 0.428 | 0.47 | 0.79 | 8.38×10-9 | 2.06 | 2.24 | 1.23×106 |
MOF | LCD/nm | PLD/nm | VF | $N_{C_{2}H_{6}}^{B}$/(mol•kg-1) | $D_{C_{2}H_{6}}^{B}$/(m2•s-1) | $S_{ads,C_{2}H_{6}/C_{2}H_{4}}^{B}$ | $S_{mem,C_{2}H_{6}/C_{2}H_{4}}^{B}$ | $P_{C_{2}H_{6}}^{B}$/Barrer |
---|---|---|---|---|---|---|---|---|
MISQIQ04 | 0.424 | 0.408 | 0.37 | 0.67 | 2.77×10-9 | 3.79 | 4.16 | 4.35×105 |
LURRUM | 0.847 | 0.738 | 0.60 | 1.30 | 3.09×10-10 | 2.55 | 3.67 | 1.11×105 |
UVINAP | 0.433 | 0.386 | 0.44 | 0.15 | 2.61×10-8 | 1.32 | 3.39 | 6.49×105 |
SUSZIQ | 0.629 | 0.533 | 0.43 | 0.42 | 2.96×10-10 | 2.43 | 3.32 | 3.06×104 |
ZERQOE | 0.450 | 0.403 | 0.34 | 0.26 | 5.43×10-9 | 1.85 | 2.86 | 2.24×105 |
QUXRIM | 0.475 | 0.431 | 0.34 | 0.32 | 2.54×10-9 | 2.11 | 2.63 | 1.30×105 |
GANBAZ01 | 0.576 | 0.452 | 0.65 | 1.14 | 8.33×10-12 | 1.41 | 2.32 | 2.40×103 |
PARMIG | 0.462 | 0.428 | 0.47 | 0.79 | 8.38×10-9 | 2.06 | 2.24 | 1.23×106 |
[1] |
Kang M.; Yoon S.; Ga S.; Kang D. W.; Han S.; Choe J. H.; Kim H.; Kim D. W.; Chung Y.; Hong C. S. Adv. Sci. 2021, 8, 2004940.
|
[2] |
Li J. R.; Kuppler R. J.; Zhou H. C. Chem. Soc. Rev. 2009, 38, 1477.
doi: 10.1039/b802426j |
[3] |
Sholl D. S.; Lively R. P. Nature 2016, 532, 435.
doi: 10.1038/532435a |
[4] |
Wang Y. X.; Peh S. B.; Zhao D. Small 2019, 15, 1900058.
|
[5] |
Lv D. F.; Zhou P. J.; Xu J. H.; Tu S.; Xu F.; Yan J.; Xi H. X.; Yuan W. B.; Fu Q.; Chen X.; Xia Q. B. Chem. Eng. J. 2022, 431, 133208.
|
[6] |
Eldridge R. B. Ind. Eng. Chem. Res. 1993, 32, 2208.
doi: 10.1021/ie00022a002 |
[7] |
Ren Y. X.; Liang X.; Dou H. Z.; Ye C. M.; Guo Z. Y.; Wang J. Y.; Pan Y. C.; Wu H.; Guiver M. D.; Jiang Z. Y. Adv. Sci. 2020, 7, 2001398.
|
[8] |
Rungta M.; Zhang C.; Koros W. J.; Xu L. R. AIChE J. 2013, 59, 3475.
doi: 10.1002/aic.14105 |
[9] |
Daglar H.; Erucar I.; Keskin S. Mater. Adv. 2021, 2, 5300.
doi: 10.1039/D1MA00026H |
[10] |
Liu Z. L.; Li W.; Liu H.; Zhuang X. D.; Li S. Acta Chim. Sinica 2019, 77, 323.(in Chinese)
doi: 10.6023/A18120497 |
(刘治鲁, 李炜, 刘昊, 庄旭东, 李松, 化学学报, 2019, 77, 323.)
doi: 10.6023/A18120497 |
|
[11] |
Wu X. J.; Zhao P.; Fang J. M.; Wang J.; Liu B. S.; Cai W. Q. Acta Phys.-Chim. Sin. 2014, 30, 2043.(in Chinese)
doi: 10.3866/PKU.WHXB201409222 |
(吴选军, 赵鹏, 方继敏, 王杰, 刘保顺, 蔡卫权, 物理化学学报, 2014, 30, 2043.)
|
|
[12] |
Bian L.; Li W.; Wei Z. Z.; Liu X. W.; Li S. Acta Chim. Sinica 2018, 76, 303.(in Chinese)
doi: 10.6023/A18010026 |
(卞磊, 李炜, 魏振振, 刘晓威, 李松, 化学学报, 2018, 76, 303.)
doi: 10.6023/A18010026 |
|
[13] |
Yang L.; Wu Y. J.; Wu X. J.; Cai W. Q. Acta Chim. Sinica 2021, 79, 520.(in Chinese)
doi: 10.6023/A20110526 |
(杨磊, 吴宇静, 吴选军, 蔡卫权, 化学学报, 2021, 79, 520.)
doi: 10.6023/A20110526 |
|
[14] |
Zhou J. H.; Zhao H. L.; Hu J.; Liu H. L.; Hu Y. CIESC J. 2014, 65, 1680.(in Chinese)
|
(周建海, 赵会玲, 胡军, 刘洪来, 胡英, 化工学报, 2014, 65, 1680.)
|
|
[15] |
Zhu G. F.; Chen L. T.; Cheng G. H.; Zhao J.; Yang C.; Zhang Y. Z.; Wang X.; Fan J. Acta Chim. Sinica 2019, 77, 434.(in Chinese)
doi: 10.6023/A18120511 |
(朱桂芬, 陈乐田, 程国浩, 赵娟, 杨灿, 张耀宗, 王醒, 樊静, 化学学报, 2019, 77, 434.)
doi: 10.6023/A18120511 |
|
[16] |
Liu M. L.; Wu Q.; Shi H. F.; An Z. F.; Huang W. Acta Chim. Sinica 2018, 76, 246.(in Chinese)
doi: 10.6023/A17110504 |
(刘明丽, 吴琪, 史慧芳, 安众福, 黄维, 化学学报, 2018, 76, 246.)
doi: 10.6023/A17110504 |
|
[17] |
Meng S. Y.; Wang M. M.; Lu B. L.; Xue Q. J.; Yang Z. W. Acta Chim. Sinica 2019, 77, 1184.(in Chinese)
doi: 10.6023/A19070268 |
(孟双艳, 王明明, 吕柏霖, 薛群基, 杨志旺, 化学学报, 2019, 77, 1184.)
doi: 10.6023/A19070268 |
|
[18] |
Wu Z. M.; Shi Y.; Li C. Y.; Niu D. Y.; Chu Q.; Xiong W.; Li X. Y. Acta Chim. Sinica 2019, 77, 758.(in Chinese)
doi: 10.6023/A19040129 |
(武卓敏, 石勇, 李春艳, 牛丹阳, 楚奇, 熊巍, 李新勇, 化学学报, 2019, 77, 758.)
doi: 10.6023/A19040129 |
|
[19] |
Liu R. X.; He X. Y.; Niu L. T.; Lv B. L.; Yu F.; Zhang Z.; Yang Z. W. Acta Chim. Sinica 2019, 77, 653.(in Chinese)
doi: 10.6023/A19040113 |
(刘茹雪, 何小燕, 牛力同, 吕柏霖, 余菲, 张哲, 杨志旺, 化学学报, 2019, 77, 653.)
doi: 10.6023/A19040113 |
|
[20] |
Lv L. X.; Zhao Y. L.; Wei Y. Y.; Wang H. H. Acta Chim. Sinica 2021, 79, 869.(in Chinese)
doi: 10.6023/A21030099 |
(吕露茜, 赵娅俐, 魏嫣莹, 王海辉, 化学学报, 2021, 79, 869.)
doi: 10.6023/A21030099 |
|
[21] |
Huang A. S.; Wang N. Y.; Kong C. L.; Caro J. Angew. Chem. Int. Ed. 2012, 51, 10551.
doi: 10.1002/anie.201204621 |
[22] |
Pan Y.; Lai Z. Chem. Commun. 2011, 47, 10275.
doi: 10.1039/c1cc14051e |
[23] |
Bux H.; Chmelik C.; Krishna R.; Caro J. J. Membr. Sci. 2011, 369, 284.
doi: 10.1016/j.memsci.2010.12.001 |
[24] |
James J. B.; Wang J.; Meng L.; Lin Y. S. Ind. Eng. Chem. Res. 2017, 56, 7567.
doi: 10.1021/acs.iecr.7b01536 |
[25] |
Chmelik C.; Freude D.; Bux H.; Haase J. Microporous Mesoporous Mater. 2012, 147, 135.
doi: 10.1016/j.micromeso.2011.06.009 |
[26] |
Berens S.; Hillman F.; Jeong H. K.; Vasenkov S. Microporous Mesoporous Mater. 2019, 288, 109603.
|
[27] |
Berens S.; Chmelik C.; Hillman F.; Kärger J.; Jeong H. K.; Vasenkov S. Phys. Chem. Chem. Phys. 2018, 20, 23967.
doi: 10.1039/C8CP04889D |
[28] |
Borah B.; Zhang H.; Snurr R. Q. Chem. Eng. Sci. 2015, 124, 135.
doi: 10.1016/j.ces.2014.09.031 |
[29] |
Ford D. C.; Dubbeldam D.; Snurr R. Q.; Künzel V.; Wehring M.; Stallmach F.; Kärger J.; Müller U. J. Phys. Chem. Lett. 2012, 3, 930.
doi: 10.1021/jz300141n |
[30] |
Krokidas P.; Castier M.; Moncho S.; Brothers E.; Economou I. G. J. Phys. Chem. C 2015, 119, 27028.
doi: 10.1021/acs.jpcc.5b08554 |
[31] |
Chokbunpiam T.; Chanajaree R.; Saengsawang O.; Reimann S.; Chmelik C.; Fritzsche S.; Hannongbua S. Microporous Mesoporous Mater. 2013, 174, 126.
doi: 10.1016/j.micromeso.2012.12.047 |
[32] |
Verploegh R. J.; Nair S.; Sholl D. S. J. Am. Chem. Soc. 2015, 137, 15760.
doi: 10.1021/jacs.5b08746 pmid: 26606267 |
[33] |
Altintas C.; Keskin S. Chem. Eng. Sci. 2016, 139, 49.
doi: 10.1016/j.ces.2015.09.019 |
[34] |
Altintas C.; Keskin S. RSC Adv. 2017, 7, 52283.
doi: 10.1039/c7ra11562h pmid: 29308193 |
[35] |
Moghadam P. Z.; Li A.; Wiggin S. B.; Tao A.; Fairen-Jimenez D. Chem. Mater. 2017, 29, 2618.
doi: 10.1021/acs.chemmater.7b00441 |
[36] |
Chong S.; Lee S.; Kim B.; Kim J. Coord. Chem. Rev. 2020, 423, 213487.
|
[37] |
Tang H. J.; Jiang J. W. AIChE J. 2021, 67, e17025.
|
[38] |
Solanki V. A.; Borah B. J. Mol. Model. 2020, 26, 1.
doi: 10.1007/s00894-019-4247-5 |
[39] |
Qiao Z. W.; Peng C. W.; Zhou J.; Jiang J. W. J. Mater. Chem. A 2016, 4, 15904.
doi: 10.1039/C6TA06262H |
[40] |
Qiao Z. W.; Xu Q. S.; Jiang J. W. J. Membr. Sci. 2018, 551, 47.
doi: 10.1016/j.memsci.2018.01.020 |
[41] |
Altintas C.; Avci G.; Daglar H.; Gulcay E.; Erucar I.; Keskin S. J. Mater. Chem. A 2018, 6, 5836.
doi: 10.1039/c8ta01547c pmid: 30009024 |
[42] |
Avci G.; Erucar I.; Keskin S. ACS Appl. Mater. Interfaces 2020, 12, 41567.
doi: 10.1021/acsami.0c12330 |
[43] |
Wilmer C. E.; Leaf M.; Lee C. Y.; Farha O. K.; Hauser B. G.; Hupp J. T.; Snurr R. Q. Nat. Chem. 2012, 4, 83.
doi: 10.1038/nchem.1192 |
[44] |
Gómez-Gualdrón D. A.; Colón Y. J.; Zhang X.; Wang T. C.; Chen Y. S.; Hupp J. T.; Yildirim T.; Farha O. K.; Zhang J.; Snurr R. Q. Energy Environ. Sci. 2016, 9, 3279.
doi: 10.1039/C6EE02104B |
[45] |
Boyd P. G.; Chidambaram A.; García-Díez E.; Ireland C. P.; Daff T. D.; Bounds R.; Gładysiak A.; Schouwink P.; Moosavi S. M.; Maroto-Valer M. M.; Reimer J. A.; Navarro J. A. R.; Woo T. K.; Garcia S.; Stylianou K. C.; Smit B. Nature 2019, 576, 253.
doi: 10.1038/s41586-019-1798-7 |
[46] |
Yang W. Y.; Liang H.; Peng F.; Liu Z. L.; Liu J.; Qiao Z. W. Nanomaterials 2019, 9, 467.
doi: 10.3390/nano9030467 |
[47] |
Cai C. Z.; Li L. F.; Deng X. M.; Li S. H.; Liang H.; Qiao Z. W. Acta Chim. Sinica 2020, 78, 427.(in Chinese)
doi: 10.6023/A20030065 |
(蔡铖智, 李丽凤, 邓小梅, 李树华, 梁红, 乔智威, 化学学报, 2020, 78, 427.)
doi: 10.6023/A20030065 |
|
[48] |
Wang S. H.; Xue X. Y.; Cheng M.; Chen S. C.; Liu C.; Zhou L.; Bi K. X.; Ji X. Acta Chim. Sinica 2022, 80, 614.(in Chinese)
doi: 10.6023/A22010031 |
(王诗慧, 薛小雨, 程敏, 陈少臣, 刘冲, 周利, 毕可鑫, 吉旭, 化学学报, 2022, 80, 614.)
doi: 10.6023/A22010031 |
|
[49] |
Yang W. Y.; Liang H.; Qiao Z. W. Acta Chim. Sinica 2018, 76, 785.(in Chinese)
doi: 10.6023/A18070293 |
(杨文远, 梁红, 乔智威, 化学学报, 2018, 76, 785.)
doi: 10.6023/A18070293 |
|
[50] |
Halder P.; Singh J. K. Energy Fuels 2020, 34, 14591.
doi: 10.1021/acs.energyfuels.0c03063 |
[51] |
Chung Y. G.; Haldoupis E.; Bucior B. J.; Haranczyk M.; Lee S.; Zhang H. D.; Vogiatzis K. D.; Milisavljevic M.; Ling S. L.; Camp J. S.; Slater B.; Ilja Siepmann J.; Sholl D. S.; Snurr R. Q. J. Chem. Eng. Data 2019, 64, 5985.
doi: 10.1021/acs.jced.9b00835 |
[52] |
Dubbeldam D.; Calero S.; Ellis D. E.; Snurr R. Q. Mol. Simul. 2016, 42, 81.
doi: 10.1080/08927022.2015.1010082 |
[53] |
Ongari D.; Boyd P. G.; Barthel S.; Witman M.; Haranczyk M.; Smit B. Langmuir 2017, 33, 14529.
doi: 10.1021/acs.langmuir.7b01682 |
[54] |
Willems T. F.; Rycroft C. H.; Kazi M.; Meza J. C.; Haranczyk M. Microporous Mesoporous Mater. 2012, 149, 134.
doi: 10.1016/j.micromeso.2011.08.020 |
[55] |
Daglar H.; Erucar I.; Keskin S. J. Membr. Sci. 2021, 618, 118555.
|
[56] |
Mayo S. L.; Olafson B. D.; Goddard W. A. J. Phys. Chem. 1990, 94, 8897.
doi: 10.1021/j100389a010 |
[57] |
Rappé A. K.; Casewit C. J.; Colwell K. S.; Goddard III W. A.; Skiff W. M. J. Am. Chem. Soc. 1992, 114, 10024.
doi: 10.1021/ja00051a040 |
[58] |
Ban S.; Van Laak A.; De Jongh P. E.; Van der Eerden J. P.; Vlugt T. J. J. Phys. Chem. C 2007, 111, 17241.
doi: 10.1021/jp074918p |
[59] |
Widom B. J. Chem. Phys. 1963, 39, 2808.
doi: 10.1063/1.1734110 |
[60] |
Evans D. J.; Holian B. L. J. Chem. Phys. 1985, 83, 4069.
doi: 10.1063/1.449071 |
[61] |
Altintas C.; Keskin S. ACS Sustainable Chem. Eng. 2018, 7, 2739.
doi: 10.1021/acssuschemeng.8b05832 |
[62] |
Accelrys Incorporation, Materials Studio, Version 19.1, Accelrys Inc., San Diego, 2009.
|
[63] |
Rappe A. K.; Goddard W. A. J. Chem. Phys. 1991, 95, 3358.
doi: 10.1021/j100161a070 |
[64] |
Martin M. G.; Ilja Siepmann J. J. Phys. Chem. B 1998, 102, 2569.
doi: 10.1021/jp972543+ |
[65] |
Ertl P.; Schuffenhauer A. J. Cheminf. 2009, 1, 8.
doi: 10.1186/1758-2946-1-8 |
[66] |
Alibaba.com, Available online: https://www.alibaba.com, Accessed on 16 June 2022.
|
[67] |
Ozturk T. N.; Keskin S. J. Phys. Chem. C 2014, 118, 13988.
doi: 10.1021/jp5033977 |
[68] |
Lundberg S.; Lee S. I. In Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS'17),Ed.: Hook, R., Curran Associates Inc., New York, 2017, p. 4768.
|
[69] |
Wang R. H.; Zhong Y. H.; Bi L. M.; Yang M. L.; Xu D. G. ACS Appl. Mater. Interfaces 2020, 12, 52797.
doi: 10.1021/acsami.0c16516 |
[70] |
Van der Maaten L.; Hinton G. J. Mach. Learn. Res. 2008, 9, 2579.
|
[1] | 戚兴怡, 胡耀峰, 王若愚, 杨雅清, 赵宇飞. 机器学习在新材料筛选方面的应用进展[J]. 化学学报, 2023, 81(2): 158-174. |
[2] | 韩逸之, 蓝建慧, 刘学, 石伟群. 基于机器学习势函数的熔盐体系分子动力学研究进展[J]. 化学学报, 2023, 81(11): 1663-1672. |
[3] | 刘雨泽, 李昆华, 黄佳兴, 于曦, 胡文平. 多组件学习器实现有机分子沸点的精准预测[J]. 化学学报, 2022, 80(6): 714-723. |
[4] | 王诗慧, 薛小雨, 程敏, 陈少臣, 刘冲, 周利, 毕可鑫, 吉旭. 机器学习与分子模拟协同的CH4/H2分离金属有机框架高通量计算筛选[J]. 化学学报, 2022, 80(5): 614-624. |
[5] | 杨磊, 吴宇静, 吴选军, 蔡卫权. 面向C4烯烃混合物吸附分离的真实金属-有机骨架材料高通量筛选[J]. 化学学报, 2021, 79(4): 520-529. |
[6] | 付浩浩, 陈淏川, 张宏, 邵学广, 蔡文生. 基于几何约束的蛋白质-配体准确结合自由能计算[J]. 化学学报, 2021, 79(4): 472-480. |
[7] | 蔡铖智, 李丽凤, 邓小梅, 李树华, 梁红, 乔智威. 基于机器学习和高通量计算筛选金属有机框架的甲烷/乙烷/丙烷分离性能[J]. 化学学报, 2020, 78(5): 427-436. |
[8] | 朱博阳, 吴睿龙, 于曦. 人工智能助力当代化学研究[J]. 化学学报, 2020, 78(12): 1366-1382. |
[9] | 刘治鲁, 李炜, 刘昊, 庄旭东, 李松. 金属有机骨架的高通量计算筛选研究进展[J]. 化学学报, 2019, 77(4): 323-339. |
[10] | 卞磊, 李炜, 魏振振, 刘晓威, 李松. 基于高通量计算筛选的金属有机骨架材料甲醛吸附性能[J]. 化学学报, 2018, 76(4): 303-310. |
[11] | 杨文远, 梁红, 乔智威. 高通量筛选金属-有机框架:分离天然气中的硫化氢和二氧化碳[J]. 化学学报, 2018, 76(10): 785-792. |
[12] | 刘蓓, 廉源会, 李智, 陈光进. 生物金属-有机骨架材料中药物吸附及扩散的分子模拟研究[J]. 化学学报, 2014, 72(8): 942-948. |
[13] | 刘蓓, 唐李兴, 廉源会, 李智, 孙长宇, 陈光进. 互穿结构及混合配体对金属-有机骨架材料分离性能的影响[J]. 化学学报, 2013, 71(06): 920-928. |
[14] | 陈晓光, 赵晓杰, 王嵩, 王丽萍, 李惟, 孙家钟. Sirt1及Sirt2与活性分子INA的作用机制研究[J]. 化学学报, 2013, 71(02): 199-204. |
[15] | 李悦, 谷雨, 何佳, 何华, 周祎, Chuong Pham-Huy. 光谱法与分子模拟技术研究杨梅素与牛血清白蛋白的相互作用[J]. 化学学报, 2012, 70(02): 143-150. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||