化学学报 ›› 2018, Vol. 76 ›› Issue (8): 597-604.DOI: 10.6023/A18040173 上一篇    下一篇

综述

隐花色素磁感应模型体系的研究进展

郭锦平a, 万浩宇a, Jörg Matysik(誉宫)b, 王孝杰a   

  1. a 国防科技大学文理学院生物与化学系 长沙 410073;
    b 莱比锡大学分析化学系 莱比锡(德国) 04103
  • 投稿日期:2018-04-27 发布日期:2018-06-22
  • 通讯作者: 王孝杰 E-mail:wangxiaojie@nudt.edu.cn
  • 作者简介:郭锦平,男,2016年于南开大学获得理学学士学位,同年进入国防科技大学攻读硕士学位,指导老师为王孝杰副教授,研究方向为隐花色素模型化合物的合成与磁感应研究;万浩宇,男,国防科技大学应用化学专业2014级本科生,目前从事隐花色素模型化合物的合成相关工作;Jörg Matysik,男,博士,现任德国莱比锡大学分析化学研究所所长,全职教授.1964年出生于德国埃森.;王孝杰,男,博士,副教授,1970年10月出生于内蒙古包头.于1992和1996年毕业于国防科技大学应用化学专业,分别获学士、硕士学位,2007年毕业于国防科技大学材料科学与工程专业,获博士学位.1992年至今在国防科技大学从事化学方面的教学科研工作.
  • 基金资助:

    项目受国防科技大学校科研计划(No.ZK16-03-55)资助.

Recent Advances in Magnetosensing Cryptochrome Model Systems

Guo Jinpinga, Wan Haoyua, Jörg Matysikb, Wang Xiaojiea   

  1. a Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha 410073;
    b Institut für Analytische Chemie, Universität Leipzig, Linnéstr. 3, 04103 Leipzig, Germany
  • Received:2018-04-27 Published:2018-06-22
  • Contact: 10.6023/A18040173 E-mail:wangxiaojie@nudt.edu.cn
  • Supported by:

    Project supported by the National University of Defense Technology Research Foundation (No. ZK16-03-55).

半个世纪以来,动物地磁导航得到了广泛而深入的研究,然而其背后的磁感应机理还不清楚.1978年,Schulten等提出自由基对机理可能是生物磁感应的内在机制.近年来,这一假设得到发展和完善,提出隐花色素蛋白是生物的磁感应分子的观点.由于生物体内环境的复杂性和隐花色素蛋白的易光解特性,生物磁感应自由基对机理的研究受到很大限制.为了深入研究生物磁感应自由基对机理,人们构建了磁感应模型体系,大大简化了生物环境的复杂性,从不同方面开展了磁感应研究.基于国内外学者的研究成果,主要介绍隐花色素磁感应和各种模型体系相关研究进展,简要总结并提出生物磁感应自由基对机理研究中亟待解决的问题.

关键词: 隐花色素, 生物磁感应, 自由基对机理, 黄素, 模型体系

Although it has been widely and deeply studied for half a century that many animals sense the Earth's magnetic field for navigation, the exact mechanism of magnetoreception is still largely unclear. In 1978, Schulten et al. proposed that the radical-pair mechanism provides the operational principle of light-depended biological magnetoreception. This hypothesis has been developed in recent years, assuming that the flavoprotein and blue-light photoreceptor cryptochrome is the biological magnetosensitive molecule undergoing light-triggered radical-pair dynamics. Evidence is accumulating in favor of this radical-pair-based magnetoreception and the cryptochrome hypothesis. However, Complex in vivo and photochemical properties of cryptochrome hamper to identify the exact mechanism of biological magnetoreception. According to the radical-pair mechanism, magnetic fields may alter the rate and yields of chemical reactions involving spin-correlated radical pairs (SCRP) as intermediates. Such magnetic field effects (MFE) have been studied in detail in a variety of chemical systems both exper-imentally and theoretically. To improve the understanding of the radical-pair mechanism and the magnetosensitivity of cryp-tochrome, several artificial model systems have been constructed and studied by different analytical means. Model systems greatly simplify the complexity of the biological environment and allow for systematic variation of properties. Based on the research of domestic and foreign scholars, we here review studies on the radical-pair-based biological magnetoreception and magnetosensitivity of cryptochrome, and we discuss the recent progresses on three major artificial model systems:(1) a variety of flavin-based radical pair systems in mixture solution, micellar solution or protein environment; (2) chemical magnetosensitive model molecules, e.g. flavin adenine dinucleotide (FAD), a carotenoid-porphyrin-fullerene triad (C-P-F) and a flavin-tryptophan dyad (F10T); (3) artificial flavoprotein magnetosensors, i.e., a family of simplified, adaptable proteins-flavomaquettes. We also briefly summarize characteristics and advantages of those different artificial model systems and raise some key scientific issues in the further research on radical-pair-based biological magnetoreception.

Key words: cryptochrome, biological magnetoreception, radical-pair mechanism, flavin, model systems