Acta Chim. Sinica ›› 2017, Vol. 75 ›› Issue (5): 485-493.DOI: 10.6023/A17010012 Previous Articles     Next Articles

Article

氮掺杂部分石墨化碳/钴铁氧化物复合材料的制备及电化学性能

李甜甜, 赵继宽, 李尧, 全贞兰, 徐洁   

  1. 生态化工国家重点实验室培育基地(青岛科技大学) 化学与分子工程学院 青岛 266042
  • 收稿日期:2017-01-10 出版日期:2017-05-15 发布日期:2017-04-25
  • 通讯作者: 赵继宽 E-mail:forestzhao@163.com
  • 基金资助:

    项目受国家自然科学基金(No.21403121)、山东省自然科学基金(No.ZR2013BQ013)和山东省高等学校科技计划(No.J14LC13)资助.

Synthesis and Electrochemical Properties of Nitrogen-Doped Partially Graphitized Carbon/Cobalt Iron Oxides Composite

Li Tiantian, Zhao Jikuan, Li Yao, Quan Zhenlan, Xu Jie   

  1. State Key Laboratory Base of Eco-Chemical Engineering (Qingdao University of Science and Technology), College of Chemistry and Molecular Engineering, Qingdao 266042
  • Received:2017-01-10 Online:2017-05-15 Published:2017-04-25
  • Contact: 10.6023/A17010012 E-mail:forestzhao@163.com
  • Supported by:

    Project supported by the National Natural Science Foundation of China (No. 21403121), the Natural Science Foundation of Shandong Province of China (No. ZR2013BQ013) and the Project of Shandong Province Higher Educational Science and Technology (No. J14LC13).

With the renewable biopolymer chitosan (CTS) as a structure directing agent and organic precursor, facile coprecipitation method was applied for the cobalt and iron nitrates in solution to prepare CTS/cobalt iron layered double hydroxides composite. The LDHs sample was calcinated in a tubular furnace under Ar atmosphere via heating ramps of 5 ℃· min-1 from room temperature to 200 ℃ and kept for 1 h, then heated to 600 ℃ and remained for 2 h. After the sample was cooled naturally to room temperature, it was heated again to 250 ℃ under air atmosphere and kept for 12 h to oxidize the transition metal elements. As a result, nitrogen-doped partially graphitized carbon/cobalt iron transition metal oxides nanocomposite (N-PGC/CoFe-TMOs) was obtained. X-ray diffraction, Raman spectroscopy, N2 adsorption-desorption analysis, scanning electron microscopy, high resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy were carried out to characterize the structure, morphology and elemental composition of the product. Cyclic voltammetry and galvanostatic charge-discharge measurements were conducted to evaluate the electrochemical properties of N-PGC/CoFe- TMOs. Experimental results showed that the CTS precursor was converted into partially graphitized carbon by pyrolysis with the help of catalysis graphitization action of transition metal elements. At the same time, the derived carbon material was successfully doped with nitrogen in situ and the N/C atomic ratio was about 1/18. N-PGC/CoFe-TMOs possessed bimodal porous texture including macropores and mesopores, exhibited combined characters of electrical double-layer supercapacitor and pseudocapacitor when used as supercapacitor electrode material. At the current density of 2 A·g-1, N-PGC/CoFe-TMOs composite delivered a large discharge capacity of 671.1 F·g-1, far higher than 283.3 F·g-1 of pure cobalt iron oxides, indicating the typical synergistic effect between nitrogen-doped partially graphitized carbon and transition metal oxides. Even at the high current density of 10 A·g-1, N-PGC/CoFe-TMOs composite still remained a specific capacity of 573.3 F·g-1. After 5000 charge-discharge cycles at 10 A·g-1, the capacitance retention was 66.4%. The reported synthesis method in this work is simple and universal, and calcination process combines the nitrogen-doping, partially graphitized carbon formation with redox-active transition metal oxides synthesis in one step, endowing the product with excellent electrochemical properties.

Key words: chitosan, nitrogen doping, partially graphitized carbon, transition metal oxides, supercapacitor