Acta Chimica Sinica ›› 2019, Vol. 77 ›› Issue (11): 1089-1098.DOI: 10.6023/A19080296 Previous Articles Next Articles
Review
金交羽ab, 严小璇b, 刘亚平b, 蓝文贤b, 王春喜b, 许斌a*(), 曹春阳b*(
)
投稿日期:
2019-08-07
发布日期:
2019-08-15
通讯作者:
许斌,曹春阳
E-mail:xubin@t.shu.edu.cn;ccao@mail.sioc.ac.cn
作者简介:
金交羽, 女, 上海大学和中科院上海有机所2017级联合培养在读硕士研究生, 主要研究方向为APOBEC3胞嘧啶脱氨基化酶的结构与机理|许斌, 男, 上海大学化学系教授、博导. 2000年获中国科学院上海有机化学研究所理学博士(导师:麻生明院士); 2000~2002年, 在美国国立卫生研究院(NIH)进行博士后研究, 从事基于嘌呤受体的激动剂和拮抗剂的设计与合成(导师: K. A. Jaconson). 2002~2005年, 于美国VivoQuest公司担任高级研究员, 从事抗丙型肝炎药物的设计和合成; 2005年底加入上海大学化学系; 2007年入选上海市“浦江人才”计划.曾获宝钢优秀教师奖、ACP Advanced Research Network Lectureship Award、Asia Core Program Lectureship Award等荣誉.研究方向: (1)惰性化学键可控转化; (2)新型药物分子的设计与合成|曹春阳, 男, 1970年8月出生. 2001年博士毕业于中国科学院上海有机化学研究所, 随后在美国约翰霍普金斯大学医学院做博士后与研究助理, 2005年12月至2006年08月, 转至美国Salk生物研究院结构生物学中心做助理研究员.现任中国科学院上海有机化学研究所“百人计划”研究员, 是上海市“浦江计划”获得者.研究方向:以健康与疾病导向的、以NMR为主要技术手段的化学生物学与结构生物学.内容包括: (1)与癌症或者HIV病毒感染等相关蛋白质与核酸特异性作用机制与功能研究; (2)以与癌症或者HIV病毒感染等相关核酸或蛋白质为靶标, 进行药物分子设计与筛选; (3)基于核磁共振波谱学的蛋白质高效表达新技术新方法研究.
基金资助:
Jin Jiaoyuab, Yan Xiaoxuanb, Liu Yapingb, Lan Wenxianb, Wang Chunxib, Xu Bina*(), Cao Chunyangb*(
)
Received:
2019-08-07
Published:
2019-08-15
Contact:
Xu Bin,Cao Chunyang
E-mail:xubin@t.shu.edu.cn;ccao@mail.sioc.ac.cn
Share
Jin Jiaoyu, Yan Xiaoxuan, Liu Yaping, Lan Wenxian, Wang Chunxi, Xu Bin, Cao Chunyang. Recent Advances in the Structural Studies on Cytosine Deaminase APOBEC3 Family Members and Their Nucleic Acid Complexes[J]. Acta Chimica Sinica, 2019, 77(11): 1089-1098.
[1] |
Goila-Gaur R.; Strebel K. Retrovirology 2008, 5, 51.
doi: 10.1186/1742-4690-5-51 |
[2] |
Larue R. S.; Andresdottir V.; Blanchard Y.; Conticello S. G.; Derse D.; Emerman M.; Greene W. C.; Jonsson S. R.; Landau N. R.; Lochelt M.; Malik H. S.; Malim M. H.; Munk C.; O'Brien S. J.; Pathak V. K.; Strebel K.; Wain-Hobson S.; Yu X. F.; Yuhki N.; Harris R. S. J. Virol. 2009, 83, 494.
doi: 10.1128/JVI.01976-08 |
[3] |
Wedekind J. E. Trends Genet. 2003, 19, 207.
doi: 10.1016/S0168-9525(03)00054-4 |
[4] |
Harris R. S.; Liddament M. T. Nat. Rev. Immunol. 2004, 4, 868.
doi: 10.1038/nri1489 |
[5] |
Kitamura S.; Ode H.; Nakashima M. Nat. Struct. Mol. Biol. 2012, 19, 1005.
doi: 10.1038/nsmb.2378 |
[6] |
Mitra M.; Hercik K.; Byeon I. J. L. Nucleic Acids Res. 2014, 42, 1095.
doi: 10.1093/nar/gkt945 |
[7] | Chen K. M.; Harjes E.; Gross P. J.; Fahmy A.; Lu Y.; Shindo K. Seibutsu Butsuri 2008, 48, 116 |
[8] |
Burns M. B.; Lackey L.; Carpenter M. A.; Rathore A.; Land A. M.; Leonard B. Nature 2013, 494, 366.
doi: 10.1038/nature11881 |
[9] |
Shi K.; Carpenter M. A.; Kurahashi K.; Harris R. S.; Aihara H. J. Biol. Chem. 2015, 290, 28120.
doi: 10.1074/jbc.M115.679951 |
[10] |
Xiao X.; Yang H.; Arutiunian V.; Fang Y.; Chen X. S. Nucleic Acids Res. 2017, 45, 7494.
doi: 10.1093/nar/gkx362 |
[11] |
Nathans R.; Cao H.; Sharova N.; Ali A.; Sharkey M.; Stranska R. Nat. Biotechnol. 2008, 26, 1187.
doi: 10.1038/nbt.1496 |
[12] |
Dang Y.; Wang X.; Esselman W. J.; Zheng Y. H. J. Virol. 2006, 80, 10522.
doi: 10.1128/JVI.01123-06 |
[13] |
Stanley B. J.; Ehrlich E. S.; Short L.; Yu Y.; Xiong Y. J. Virol. 2008, 82, 8656.
doi: 10.1128/JVI.00767-08 |
[14] |
Seplyarskiy V. B.; Andrianova M. A.; Bazykin G. A. Genome Res. 2017, 27, 175.
doi: 10.1101/gr.210336.116 |
[15] |
Zheng Y. H.; Irwin D.; Kurosu T. J. Virol. 2004, 78, 6073.
doi: 10.1128/JVI.78.11.6073-6076.2004 |
[16] |
Byeon I. J. L.; Ahn J.; Mitra M.; Byeon C. H.; Hercík K.; Hritz J. Nat. Commun. 2013, 4, 1890.
doi: 10.1038/ncomms2883 |
[17] | Chelico L.; Prochnow C.; Erie D. A. J. Biol. Chem. 2010, 283, 16195 |
[18] |
Guo Y.; Dong L.; Qiu X.; Wang Y.; Zhang B.; Liu H. Nature 2014, 505 7482 229.
doi: 10.1038/nature12884 |
[19] |
Bohn M. F. Structure 2013, 21, 1042.
doi: 10.1016/j.str.2013.04.010 |
[20] |
Siu K. K.; Sultana A.; Azimi F. Nat. Commun. 2013, 4, 2593.
doi: 10.1038/ncomms3593 |
[21] |
Matsui M.; Shindo K.; Izumi T.; Io K.; Shinohara M.; Komano J.; Kobayashi M.; Kadowaki N.; Harris R. S.; Takaori-Kondo A. Virol. J. 2014, 11, 122.
doi: 10.1186/1743-422X-11-122 |
[22] |
Kouno T.; Luengas E. M.; Shigematsu M. Nat. Struct. Mol. Biol. 2015, 22 6 485.
doi: 10.1038/nsmb.3033 |
[23] |
Klarmann G. J. J. Biol. Chem. 2003, 278, 7902.
doi: 10.1074/jbc.M207223200 |
[24] |
Furukawa A.; Nagata T.; Matsugami A. Nucleic Acids Symp. Ser. 2009, 53, 87.
doi: 10.1093/nass/nrp044 |
[25] | Mangeat B.; Turelli P.; Caron G.; Friedli M.; Perrin L.; Trono D. Nature 2003, 4244, 99 |
[26] |
Peng G. J. Exp. Med. 2006, 203, 41.
doi: 10.1084/jem.20051512 |
[27] |
Chelico L.; Pham P.; Calabrese P.; Goodman M. F. Nat. Struct. Mol. Biol. 2006, 13, 392.
doi: 10.1038/nsmb1086 |
[28] |
Harjes E.; Gross P. J.; Chen K. M.; Lu Y.; Shindo K. J. Mol. Biol. 2009, 389, 819.
doi: 10.1016/j.jmb.2009.04.031 |
[29] | Wichroski M. J. K. Ichiyama; T. M. Rana. J. Biol. Chem. 2005, 280, 8387 |
[30] |
Sheehy A. M.; Gaddis N. C.; Choi J. D.; Malim M. H. Nature 2002, 418, 646.
doi: 10.1038/nature00939 |
[31] |
Bennett R. P.; Presnyak V.; Wedekind J. E.; Smith H. C. J. Biol. Chem. 2008, 283, 7320.
doi: 10.1074/jbc.M708567200 |
[32] |
Lu X.; Zhang T. L.; Xu Z. J. Biol. Chem. 2015, 290, 4010.
doi: 10.1074/jbc.M114.624262 |
[33] |
Dang Y.; Siew L. M.; Wang X. J.; Han Y. X.; Lampen R.; Zheng Y. H. J. Biol. Chem. 2008, 283, 11606.
doi: 10.1074/jbc.M707586200 |
[34] |
Jarmuz A.; Chester A.; Bayliss J.; Gisbourne J.; Dunham I.; Scott J. Genomics 2002, 79, 285.
doi: 10.1006/geno.2002.6718 |
[35] |
Holden L. G.; Prochnow C.; Chang Y. P. Nature 2008, 456, 121.
doi: 10.1038/nature07357 |
[36] |
Olson M. E.; Li M.; Harris R. S. Chem. Med. Chem. 2013, 8, 112.
doi: 10.1002/cmdc.201200411 |
[37] |
Jager S.; Kim D. Y.; Hultquist J. F.; Shindo K.; Larue R. S.; Kwon E. Nature 2012, 481, 371.
doi: 10.1038/nature10693 |
[38] |
Mehle A.; Strack B.; Ancuta P.; Zhang C.; Mcpike M.; Gabuzda D. J. Biol. Chem. 2004, 279, 7792.
doi: 10.1074/jbc.M313093200 |
[39] |
Marcsisin S. R.; Engen J. R. J. Mol. Biol. 2010, 402, 892.
doi: 10.1016/j.jmb.2010.08.026 |
[40] |
Bergeron J. R.; Huthoff H.; Veselkov D. A.; Beavil R. L.; Sanderson M. R. PLoS Pathog. 2010, 6, e1000925.
doi: 10.1371/journal.ppat.1000925 |
[41] |
Reingewertz T. H.; Shalev D. E.; Friedler A. Protein Pept. Lett. 2010, 17, 988.
doi: 10.2174/092986610791498876 |
[42] |
Liddament M. T.; Brown W. L.; Schumacher A. J.; Harris R. S. Curr. Biol. 2004, 14, 1385.
doi: 10.1016/j.cub.2004.06.050 |
[43] |
Lu Z.; Bergeron J. R. C.; AtkinsLu Z.; Bergeron J. R. C.; Atkinson R. A.; Schaller T.; Veselkov D. A.; Oregioni A. Open. Biol. 2013, 3, 130100.
doi: 10.1098/rsob.130100 |
[44] |
Luo K.; Xiao Z.; Ehrlich E.; Yu Y.; Liu B.; Zheng S. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 11444.
doi: 10.1073/pnas.0502440102 |
[45] |
Stenglein M. D.; Burns M. B.; Li M.; Lengyel J.; Harris R. S. Nat. Struct. Mol. Biol. 2010, 17, 222.
doi: 10.1038/nsmb.1744 |
[46] |
Chelico L.; Pham P.; Calabrese P.; Goodman M. F. Nat. Struct. Mol. Biol. 2006, 13, 392.
doi: 10.1038/nsmb1086 |
[47] |
Ronsard L.; Raja R.; Panwar V.; Saini S.; Mohankumar K.; Sridharan S. Sci. Rep. 2015, 5, 15438.
doi: 10.1038/srep15438 |
[48] |
Yamanaka S.; Balestra M. E.; Ferrell L. D. Proc. Nat. Acad. Sci. U. S. A. 1995, 92, 8483.
doi: 10.1073/pnas.92.18.8483 |
[49] |
Navarro F.; Bollman B.; Chen H. Virology 2005, 333, 374.
doi: 10.1016/j.virol.2005.01.011 |
[50] |
Kouno T.; Silvas T. V.; Hilbert B. J.; Shandilya S. M. D.; Bohn M. F.; Kelch B. A.; Royer W. E.; Somasundaran M.; Kurt Yilmaz N.; Matsuo H.; Schiffer C. A. Nat. Commun. 2017, 8, 15024.
doi: 10.1038/ncomms15024 |
[51] |
Shi K.; Carpenter M. A.; Banerjee S.; Shaban N. M.; Kurahashi K.; Salamango D. J.; McCann J. L.; Starrett G. J.; Duffy J. V.; Demir O.; Amaro R. E.; Harki D. A.; Harris R. S.; Aihara H. Nat. Struct Mol. Biol. 2017, 24, 131.
doi: 10.1038/nsmb.3344 |
[52] |
Fang Y.; Xiao X.; Li S.; Wolfe A.; Chen X. S. J. Mol. Biol. 2018, 430, 87.
doi: 10.1016/j.jmb.2017.11.007 |
[53] |
Cheng C.; Zhang T.; Wang C. X.; Lan W.; Ding J.; Cao C. Y. Chin. J. Chem. 2018, 36, 1241.
doi: 10.1002/cjoc.201800508 |
[54] |
Xiao X.; Li S. X.; Yang H.; Chen X. S. Nat. Commun. 2016, 7, 12193.
doi: 10.1038/ncomms12193 |
[55] |
Maiti A.; Myint W.; Kanai T.; Delviks-Frankenberry K.; Sierra Rodriguez C.; Pathak V. K.; Schiffer C. A.; Matsuo H. Nat. Commun. 2018, 9, 2460.
doi: 10.1038/s41467-018-04872-8 |
[56] |
Yan X. X.; Lan W. X.; Wang C. X.; Cao C. Y. Chem. Asian J. 2019, 14, 2235.
doi: 10.1002/asia.201900480 |
[57] |
Bohn J. A.; Thummar K.; York A.; Raymond A.; Brown W. C.; Bieniasz P. D.; Hatziioannou T.; Smith J. L. Nat. Commun. 2017, 8, 1021.
doi: 10.1038/s41467-017-01309-6 |
[58] |
Nadine M. S.; Shi K.; Lauer K. V.; Brown W. L.; Aihara H.; Harris R. S. Mol. Cell 2018, 69, 75.
doi: 10.1016/j.molcel.2017.12.010 |
[59] |
Matsuoka T.; Nagae T.; Ode H.; Awazu H.; Kurosawa T.; Hamano A.; Matsuoka K.; Hachiya A.; Imahashi M.; Yokomaku Y.; Watanabe N.; Iwatani Y. Nucleic Acids Res. 2018, 46, 10368
doi: 10.1093/nar/gky676 |
[1] | Jing Wang, Jin Wang. Advances on Dimensional Structure Designs and Functional Applications of Aerogels [J]. Acta Chimica Sinica, 2021, 79(4): 430-442. |
[2] | Rong Zhuang, Xiaosa Xu, Changzhen Qu, Shunqi Xu, Tao Yu, Hongqiang Wang, Fei Xu. Recent Progress of Porous Polymers for Lithium Metal Anodes Protection [J]. Acta Chimica Sinica, 2021, 79(4): 378-387. |
[3] | Yumiao Lu, Wei Chen, Yanlei Wang, Feng Huo, Yihui Dong, Li Wei, Hongyan He. Research Progress on the Preparation and Properties of Two Dimensional Structure of Ionic Liquids [J]. Acta Chimica Sinica, 2021, 79(4): 443-458. |
[4] | Jing Fang, Wenjuan Zhao, Minghao Zhang, Qianrong Fang. A Novel Amide-functionalized Covalent Organic Framework for Selective Dye Adsorption [J]. Acta Chimica Sinica, 2021, 79(2): 186-191. |
[5] | Yijun Guo, Bing Wei, Xiang Zhou, Dongbao Yao, Haojun Liang. DNA Walker-Programmed Nanoparticle Superlattice [J]. Acta Chimica Sinica, 2021, 79(2): 192-199. |
[6] | Haojie Xu, Shiguo Han, Zhihua Sun, Junhua Luo. Recent Advances of Two-dimensional Organic-Inorganic Hybrid Perovskite Ferroelectric Materials [J]. Acta Chimica Sinica, 2021, 79(1): 23-35. |
[7] | Qian Chen, Qin Kuang, Zhaoxiong Xie. Research Progress of Photocatalytic CO2 Reduction Based on Two-dimensional Materials [J]. Acta Chimica Sinica, 2021, 79(1): 10-22. |
[8] | Huang Qingming. Study on the Upconversion Luminescence Mechanism of Tegtragonal LiYF4: RE with Sublattice Energy Cluster Construction and Crystal Field Manipulation [J]. Acta Chimica Sinica, 2020, 78(9): 968-979. |
[9] | Feng Boxu, Zhuang Xiaodong. Carbon-Enriched meso-Entropy Materials: from Theory to Cases [J]. Acta Chimica Sinica, 2020, 78(9): 833-847. |
[10] | Wei Zheyu, Chang Yalin, Yu Han, Han Sheng, Wei Yongge. Application of Anderson Type Heteropoly Acids as Catalysts in Organic Synthesis [J]. Acta Chimica Sinica, 2020, 78(8): 725-732. |
[11] | Wang Youfu, Liu Hanghai, Zhu Xinyuan. Mechanically Interlocked Structures within Reticular Frameworks [J]. Acta Chimica Sinica, 2020, 78(8): 746-757. |
[12] | Fu Jingru, Ben Teng. Fabrication of a Novel Covalent Organic Framework Membrane and Its Gas Separation Performance [J]. Acta Chimica Sinica, 2020, 78(8): 805-814. |
[13] | Liu Xiaojun, Qin Lang, Zhan Yuanyuan, Chen Meng, Yu Yanlei. Phototuning of Structural Colors in Cholesteric Liquid Crystals [J]. Acta Chimica Sinica, 2020, 78(6): 478-489. |
[14] | Chen Yingying, Liu Huan, Cheng Yan, Xie Qingji. Preparation of Honeycomb-structured AuPtCu Electrocatalyst by Dynamic Hydrogen Bubble and Sacrificial Cu Templates for Oxidation of Formic Acid [J]. Acta Chimica Sinica, 2020, 78(4): 330-336. |
[15] | Deng Yingyi, Qian Yinyin, Xie Ying, Zhang Lei, Zheng Bing, Lou Yuanqing, Yu Haitao. Effect of Li Adsorption on Work Function Modulation of Bilayer α-Borophene: A Theoretical Study [J]. Acta Chimica Sinica, 2020, 78(4): 344-354. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||