Acta Chimica Sinica ›› 2021, Vol. 79 ›› Issue (2): 146-157.DOI: 10.6023/A20090412 Previous Articles Next Articles
Review
投稿日期:
2020-09-07
发布日期:
2020-12-01
通讯作者:
章福祥
作者简介:
![]() |
詹溯, 2017年于大连海事大学载运工具运用工程专业获得工学博士学位, 2018年加入中国科学院大连化学物理研究所章福祥课题组, 目前主要研究方向为常温常压光电催化合成氨. |
![]() |
章福祥, 中国科学院大连化物所研究员/博导; 国家杰出青年基金获得者; 英国皇家化学会会士. 1999和2004年分别获得南开大学理学学士学位和博士学位, 同年留校任教至2007年8月, 2007年9月至2008年6月获法国CNRS博士后基金支持于巴黎第六大学做访问学者, 2008年7月至2011年9月在东京大学做博士后和特任助理教授, 2011年10月至今在中国科学院大连化学物理研究所工作. 目前主要从事宽光谱捕光催化剂全分解水制氢研究, 研究内容涉及宽光谱捕光光催化材料设计合成, 高效光生电荷分离体系构建以及光催化表面/界面反应机制等方面. 已在包括Nat. Commun., Nature Catal., Joule, J. Am. Chem. Soc., Angew. Chem. Int. Ed., Adv. Mater., Adv. Energy Mater.等刊物上发表学术论文百余篇. |
基金资助:
Received:
2020-09-07
Published:
2020-12-01
Contact:
Fuxiang Zhang
Supported by:
Share
Su Zhan, Fuxiang Zhang. Recent Progress on Electrocatalytic Synthesis of Ammonia Under Amibent Conditions[J]. Acta Chimica Sinica, 2021, 79(2): 146-157.
反应式 | 电位/V (vs. NHE), pH=0 | |
---|---|---|
N2+e–→N2 – | –4.16 | |
N2+H++e–→N2H | –3.20 | |
N2+2H++2e–→N2H2 | –1.10 | |
N2+4H++4e–→N2H4 | –0.36 | |
N2+5H++5e–→N2H5 + | –0.23 | |
N2+8H++6e–→2NH4 + | 0.27 | |
N2+6H++6e–→NH3 | 0.55 |
反应式 | 电位/V (vs. NHE), pH=0 | |
---|---|---|
N2+e–→N2 – | –4.16 | |
N2+H++e–→N2H | –3.20 | |
N2+2H++2e–→N2H2 | –1.10 | |
N2+4H++4e–→N2H4 | –0.36 | |
N2+5H++5e–→N2H5 + | –0.23 | |
N2+8H++6e–→2NH4 + | 0.27 | |
N2+6H++6e–→NH3 | 0.55 |
检测方法 | 检测范围 | 特点 | 注意事项 |
---|---|---|---|
纳氏试剂显色法 | 0.025~5.0 mg/L | 操作简便 | 试剂中含汞, 毒性高, 对环境危害大, 试剂寿命短, 需要注意Fe2+、Cu2+、Ca2+等离子对显色效果干扰 |
水杨酸-次氯酸显色法 | 0.01~1.0 mg/L | 操作简便、低毒性 | 溶液pH应大于11, 否则将影响显色化合物生成, 需要注意Fe2+离子对显色效果干扰 |
离子色谱 | 0.02~40 mg/L | 重现性好、灵敏度高、检测时间短 | 注意电解液中Na+浓度, 减少对NH4 +检测的干扰 |
15N同位素-核磁共振NMR | 5~10 μmol/L | 为生成氨的真实来源提供直接证据 | 需保证15N2气体的纯度 |
检测方法 | 检测范围 | 特点 | 注意事项 |
---|---|---|---|
纳氏试剂显色法 | 0.025~5.0 mg/L | 操作简便 | 试剂中含汞, 毒性高, 对环境危害大, 试剂寿命短, 需要注意Fe2+、Cu2+、Ca2+等离子对显色效果干扰 |
水杨酸-次氯酸显色法 | 0.01~1.0 mg/L | 操作简便、低毒性 | 溶液pH应大于11, 否则将影响显色化合物生成, 需要注意Fe2+离子对显色效果干扰 |
离子色谱 | 0.02~40 mg/L | 重现性好、灵敏度高、检测时间短 | 注意电解液中Na+浓度, 减少对NH4 +检测的干扰 |
15N同位素-核磁共振NMR | 5~10 μmol/L | 为生成氨的真实来源提供直接证据 | 需保证15N2气体的纯度 |
催化剂 | 电解液 | NH3产率 | 法拉第效率/% | 文献 | |
---|---|---|---|---|---|
传统热催化剂 | Fe2O3/CNT | KHCO3 | 2.18×10–3 gNH3•m–2•h–1 (–2.0 V vs. Ag/AgCl) | 0.025 | [ |
Fe-(O-C2)4 | 0.1 mol/L KOH | 32.1 μg•h –1•mgcat.–1 (–0.1 V vs. RHE) | 29.3 | [ | |
Fe-N4-C | 0.1 mol/L KOH | 7.48 μg•h –1•mg–1 (0.0 V vs. RHE) | 56.55 | [ | |
Fe-W18O49 | 0.25 mol/L LiClO4 | 24.7 μg•h –1•mgcat. –1 (–0.15 V vs. RHE) | 20.0 | [ | |
Ru-Mo2CTx | 0.5 mol/L K2SO4 | 40.57 μg•h –1•mg–1 (–0.3 V vs. RHE) | 25.77 | [ | |
RuSAs/N-C | 0.05 mol/L H2SO4 | 120.9 μg NH3•mgcat. –1•h–1 (–0.3 V vs. RHE) | 29.6 | [ | |
生物固氮酶同组分催化剂(Mo、V) | MoS2 | 0.1 mol/L Na2SO4 | 8.08×10–11 mol•s–1•cm–2 (–0.3 V vs. RHE) | 1.17 | [ |
Mo2N | 0.1 mol/L HCl | 78.4 μg•h –1•mgcat. –1 (–0.3 V vs. RHE) | 4.5 | [ | |
SA-Mo/NPC | 0.1 mol/L KOH | 34.0 μg•h –1•gcat. –1 (–0.3 V vs. RHE) | 14.6 | [ | |
Mo3Fe3C | 0.1 mol/L Li2SO4 | 72.5 μg•h –1•cm–2 (–0.05 V vs. RHE) | 43.6 | [ | |
V8C7 | 0.1 mol/L HCl | 34.62 μg•h –1•cm–2 (–0.4 V vs. RHE) | 12.20 | [ | |
VN | 0.1 mol/L HCl | 2.48×10-10 mol–1•s–1•cm–2 (–0.3 V vs. RHE) | 3.58 | [ | |
VO2 | 0.1 mol/L Na2SO4 | 14.85 μg•h –1•gcat. –1 (–0.7 V vs. RHE) | 3.97 | [ | |
P-V2O3/C | 0.1 mol/L Na2SO4 | 22.4 μg•h –1•mgcat. –1 (–0.35 V vs. RHE) | 13.78 | [ | |
贵金属催化剂 | Au纳米棒 | 0.1 mol/L KOH | 1.648 μg•h –1•cm–2 (–0.2 V vs. RHE) | 4.02 | [ |
Au | 0.1 mol/L HCl | 21.4 μgh –1•mgcat. –1 (–0.2 V vs. RHE) | 8.11 | [ | |
单原子Au | 5 mmol/L H2SO4 | 1305 μg•h –1•mgAu –1 (–0.1 V vs. RHE) | 11.1 | [ | |
单原子Pt | 0.1 mol/L K2SO4 | 342.4 μg•h –1•mgPt –1 (–0.2 V vs. RHE) | 31.3 | [ | |
PdCu | 0.1 mol/L KOH | 2.8 μg•h –1•mgcat. –1 (–0.2 V vs. RHE) | 0.6 | [ | |
非贵金属催化剂 | Cu-TiO2 | 0.5 mol/L LiClO4 | 21.31 μg•h –1•mgcat. –1 (–0.55 V vs. RHE) | 21.99 | [ |
Sn枝晶 | 0.1 mol/L PBS | 5.66×10–11 mol–1•s–1•cm–2 (–0.6 V vs. RHE) | 3.67 | [ | |
Cr2O3/rGO | 0.1 mol/L HCl | 33.3 μg•h –1•mgcat. –1 (–0.7 V vs. RHE) | 7.33 | [ | |
LiMn2O4 | 0.1 mol/L HCl | 15.83 μg•h –1•mgcat. –1 (–0.5 V vs. RHE) | 7.44 | [ | |
LaFeO3 | 0.1 mol/L HCl | 18.59 μg•h –1•mgcat. –1 (–0.55 V vs. RHE) | 8.77 | [ | |
Bi纳米片 | 0.1 mol/L HCl | 6.89×10–11 mol–1•s–1•cm–2 (–0.5 V vs. RHE) | 10.26 | [ |
催化剂 | 电解液 | NH3产率 | 法拉第效率/% | 文献 | |
---|---|---|---|---|---|
传统热催化剂 | Fe2O3/CNT | KHCO3 | 2.18×10–3 gNH3•m–2•h–1 (–2.0 V vs. Ag/AgCl) | 0.025 | [ |
Fe-(O-C2)4 | 0.1 mol/L KOH | 32.1 μg•h –1•mgcat.–1 (–0.1 V vs. RHE) | 29.3 | [ | |
Fe-N4-C | 0.1 mol/L KOH | 7.48 μg•h –1•mg–1 (0.0 V vs. RHE) | 56.55 | [ | |
Fe-W18O49 | 0.25 mol/L LiClO4 | 24.7 μg•h –1•mgcat. –1 (–0.15 V vs. RHE) | 20.0 | [ | |
Ru-Mo2CTx | 0.5 mol/L K2SO4 | 40.57 μg•h –1•mg–1 (–0.3 V vs. RHE) | 25.77 | [ | |
RuSAs/N-C | 0.05 mol/L H2SO4 | 120.9 μg NH3•mgcat. –1•h–1 (–0.3 V vs. RHE) | 29.6 | [ | |
生物固氮酶同组分催化剂(Mo、V) | MoS2 | 0.1 mol/L Na2SO4 | 8.08×10–11 mol•s–1•cm–2 (–0.3 V vs. RHE) | 1.17 | [ |
Mo2N | 0.1 mol/L HCl | 78.4 μg•h –1•mgcat. –1 (–0.3 V vs. RHE) | 4.5 | [ | |
SA-Mo/NPC | 0.1 mol/L KOH | 34.0 μg•h –1•gcat. –1 (–0.3 V vs. RHE) | 14.6 | [ | |
Mo3Fe3C | 0.1 mol/L Li2SO4 | 72.5 μg•h –1•cm–2 (–0.05 V vs. RHE) | 43.6 | [ | |
V8C7 | 0.1 mol/L HCl | 34.62 μg•h –1•cm–2 (–0.4 V vs. RHE) | 12.20 | [ | |
VN | 0.1 mol/L HCl | 2.48×10-10 mol–1•s–1•cm–2 (–0.3 V vs. RHE) | 3.58 | [ | |
VO2 | 0.1 mol/L Na2SO4 | 14.85 μg•h –1•gcat. –1 (–0.7 V vs. RHE) | 3.97 | [ | |
P-V2O3/C | 0.1 mol/L Na2SO4 | 22.4 μg•h –1•mgcat. –1 (–0.35 V vs. RHE) | 13.78 | [ | |
贵金属催化剂 | Au纳米棒 | 0.1 mol/L KOH | 1.648 μg•h –1•cm–2 (–0.2 V vs. RHE) | 4.02 | [ |
Au | 0.1 mol/L HCl | 21.4 μgh –1•mgcat. –1 (–0.2 V vs. RHE) | 8.11 | [ | |
单原子Au | 5 mmol/L H2SO4 | 1305 μg•h –1•mgAu –1 (–0.1 V vs. RHE) | 11.1 | [ | |
单原子Pt | 0.1 mol/L K2SO4 | 342.4 μg•h –1•mgPt –1 (–0.2 V vs. RHE) | 31.3 | [ | |
PdCu | 0.1 mol/L KOH | 2.8 μg•h –1•mgcat. –1 (–0.2 V vs. RHE) | 0.6 | [ | |
非贵金属催化剂 | Cu-TiO2 | 0.5 mol/L LiClO4 | 21.31 μg•h –1•mgcat. –1 (–0.55 V vs. RHE) | 21.99 | [ |
Sn枝晶 | 0.1 mol/L PBS | 5.66×10–11 mol–1•s–1•cm–2 (–0.6 V vs. RHE) | 3.67 | [ | |
Cr2O3/rGO | 0.1 mol/L HCl | 33.3 μg•h –1•mgcat. –1 (–0.7 V vs. RHE) | 7.33 | [ | |
LiMn2O4 | 0.1 mol/L HCl | 15.83 μg•h –1•mgcat. –1 (–0.5 V vs. RHE) | 7.44 | [ | |
LaFeO3 | 0.1 mol/L HCl | 18.59 μg•h –1•mgcat. –1 (–0.55 V vs. RHE) | 8.77 | [ | |
Bi纳米片 | 0.1 mol/L HCl | 6.89×10–11 mol–1•s–1•cm–2 (–0.5 V vs. RHE) | 10.26 | [ |
[1] |
(a) Erisman J.W. ; Sutton M.A. ; Galloway J. ; Klimont Z. ; Winiwarter W. Nat. Geosci. 2008, 1, 636.
|
(b) Ertl G. Angew. Chem. Int. Ed. 2008, 47, 3524.
|
|
[2] |
(a) Li X.B. ; Tung C.H. ; Wu L.Z. Angew. Chem. Int. Ed. 2019, 58, 10804.
|
(b) Zamfirescu C. ; Dincer I. J. Power Sources 2008, 185, 459.
|
|
(c) Foster S.L. ; Perez Bakovic S.I. ; Duda R.D. ; Maheshwari S. ; Milton R.D. ; Minteer S.D. ; Janik M.J. ; Renner J.N. ; Greenlee L.F. Nat. Catal. 2018, 1, 490.
|
|
(d) Guo J.P. ; Chen P. Chem 2017, 3, 709.
|
|
[3] |
Schuth F. ; Palkovits R. ; Schlogl R. ; Su D.S. Energy Environ. Sci. 2012, 5, 6278.
|
[4] |
Liu H. ; Chin J. J. Catal. 2014, 35, 1619.
|
[5] |
Rafiqul I. ; Weber C. ; Lehmann B. ; Voss A. Energy 2005, 30, 2487.
|
Qiu W.B. ; Xie X.Y. ; Qiu J.D. ; Fang W.H. ; Liang R.P. ; Ren X. ; Ji X.Q. ; Cui G.W. ; Asiri A.M. ; Cui G.L. ; Tang B. ; Sun X.P. Nat. Commun. 2018, 9, 3485.
|
|
[6] |
(a) Nishibayashi Y. ; Saito M. ; Uemura S. ; Takekuma S. ; Takekuma H. ; Yoshida Z. Nature 2004, 428, 279.
|
(b) Li H. ; Shang J. ; Ai Z. ; Zhang L. J. Am. Chem. Soc. 2015, 137, 6393.
|
|
(c) Hao Y. ; Dong X. ; Zhai S. ; Ma H. ; Wang X. ; Zhang X. Chem. Eur. J. 2016, 22, 18722.
|
|
(d) Schrock R.R. Acc. Chem. Res. 2005, 38, 955.
|
|
(e) Sun S. ; An Q. ; Wang W. ; Zhang L. ; Liu J. ; Goddard W.A. J. Mater. Chem. A 2017, 5, 201.
|
|
(f) Sun S. ; Li X. ; Wang W. ; Zhang L. ; Sun X. Appl. Catal. B-Environ. 2017, 200, 323.
|
|
(g) Banerjee A. ; Yuhas B.D. ; Margulies E.A. ; Zhang Y. ; Shim Y. ; Wasielewski M.R. ; Kanatzidis M.G. J. Am. Chem. Soc. 2015, 137, 2030.
|
|
(h) Liu J. ; Kelley M.S. ; Wu W. ; Banerjee A. ; Douvalis A.P. ; Wu J. ; Zhang Y. ; Schatz G.C. ; Kanatzidis M.G. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, 5530.
|
|
(i) Oshikiri T. ; Ueno K. ; Misawa H. Angew. Chem. Int. Ed. 2014, 53, 9802.
|
|
(j) Pickett C.J. ; Talarmin J. Nature 1985, 317, 652.
|
|
(k) Kordali V. ; Kyriacou G. ; Lambrou C.H. Chem. Commun. 2000, 0, 1673.
|
|
(l) Yu X.M. ; Han P. ; Wei Z.X. ; Huang L.S. ; Gu Z.X. ; Peng S.J. ; Ma J.M. ; Zheng G.F. Joule 2018, 2, 1610.
|
|
(m) Lv C. ; Qian Y.M. ; Yan C.S. ; Ding Y. ; Liu Y.Y. ; Chen G. ; Yu G.H. Angew. Chem. Int. Ed. 2018, 57, 10246.
|
|
(n) Zhang L.L. ; Ding L.X. ; Chen G.F. ; Yang X.F. ; Wang H.H. Angew. Chem. Int. Ed. 2019, 131, 2612.
|
|
[7] |
Walter M.G. ; Warren E.L. ; Mckone J.R. ; Boettcher S.W. ; Mi Q.X. ; Santori E.A. ; Lewis N.S. Chem. Rev. 2010, 110, 6446.
|
[8] |
Chen J.G. ; Crooks R.M. ; Seefeldt L.C. ; Bren K.L. ; Bullock R.M. ; Darensbourg M.Y. ; Holland P.L. ; Hoffman B. ; Janik M.J. ; Jones A.K. ; Kanatzidis M.G. ; King P. ; Lancaster K.M. ; Lymar S.V. ; Pfromm P. ; Schneider W.F. ; Schrock R.R. Science 2018, 360, 873.
|
[9] |
Shilov A.E. Russ. Chem. Bull. 2003, 52, 2555.
|
[10] |
(a) Singh A.R. ; Rohr B.A. ; Schwalbe J.A. ; Cargnello M. ; Chan K. ; Jaramillo T.F. ; Chorkendorff I.B. ; Norskov J.K. ACS Catal. 2017, 7, 106.
|
(b) Skulason E. ; Bligaard T. ; Gudmundsdottir S. ; Studt F. ; Rossmeisl J. ; Abild-Pedersen F. ; Vegge T. ; Jonsson H. ; Norskov J.K. Phys. Chem. Chem. Phys. 2012, 14, 1235.
|
|
[11] |
(a) Shipman M.A. ; Symes M.D. Catal. Today 2017, 286, 57.
|
(b) Xu H. ; Inthisuphalap K. ; Li Y. ; Mukherjee S. ; Lattimer J. ; Soloveichik G. ; Wu G. Nano Energy 2020, 69, 104469.
|
|
[12] |
Urabe K. ; Aika K.I. ; Ozaki A. J. Catal. 1974, 11, 108.
|
[13] |
Ithisuphalap K. ; Zhang H. ; Guo L. ; Yang Q. ; Yang H. ; Wu G. Small Methods 2019, 3, 1800352.
|
[14] |
Huang Y.W. ; Zhang N. ; Wu Z.J. ; Xie X.Q. J. Mater. Chem. A 2020, 8, 4978.
|
[15] |
(a) Furuya N. ; Yoshiba H.J. Electroanal. Chem. Interfacial Electrochem. 1989, 263, 171.
|
(b) Lan R. ; Irvine J.T.S. ; Tao S. Sci. Rep. 2013, 3, 1145.
|
|
[16] |
(a) Kugler K. ; Luhn M. ; Schramm J.A. ; Rahimi K. ; Wessling M. Phys. Chem. Chem. Phys. 2015, 17, 3768.
|
(b) Yang D. ; Chen T. ; Wang Z. J. Mater. Chem. A 2017, 5, 18967.
|
|
(c) Zhao Z.M. ; Luo S. ; Ma P. ; Luo Y.T. ; Wu W. ; Long Y. ; Ma J.T. ACS Sustain. Chem. Eng. 2020, 8, 8814.
|
|
[17] |
Gibert R. ; Rioux R. ; Saheb E. Anal. Chem. 1984, 56, 106.
|
[18] |
(a) Lazouski N. ; Chung M.J. ; Williams K. ; Gala M.L. ; Manthiram K. Nat. Catal. 2020, 3, 463.
|
(b) Liu D.N. ; Wang J.H. ; Bian S. ; Liu Q. ; Gao Y.H. ; Wang X. ; Chu P.K. ; Yu X.F. Adv. Funct. Mater. 2020, 2002731.
|
|
[19] |
Zhou L. ; Boyd C.E. Aquaculture 2016, 450, 187.
|
[20] |
Cui X.Y. ; Tang C. ; Zhang Q. Adv. Energy Mater. 2018, 1800369.
|
[21] |
Hodgetts R.Y. ; Kiryutin A.S. ; Nichols P. ; Du H.L. ; Bakker J.M. ; Macfarlane D.R. ; Simonov A.N. ACS Energy Lett. 2020, 5, 736.
|
[22] |
Suryanto B.H.R. ; Du H.L. ; Wang D.B. ; Chen J. ; Simonov A.N. ; MacFarlane D.R. Nat. Catal. 2019, 2, 290.
|
[23] |
Shi M.M. ; Bao D. ; Wulan B.R. ; Li Y.H. ; Zhang Y.F. ; Yan J.M. ; Jiang Q. Adv. Mater. 2017, 29, 1606550.
|
[24] |
Schlesinger W.H. ; Hartley A.E. Biogeocemistry 1992, 15, 191.
|
[25] |
Turner C. ; Spanel P. ; Smith D.A. Physiol. Meas. 2006, 27, 321.
|
[26] |
Andersen S.Z. ; Colic V. ; Yang S. ; Schwalbe J.A. ; Nielander A.C. ; McEnaney J.M. ; Enemark-Rasmussen K. ; Baker J.G. ; Singh A.R. ; Rohr B.A. ; Statt M.J. ; Blair S.J. ; Mezzavilla S. ; Kibsgaard J. ; Vesborg P.C.K. ; Cargnello M. ; Bent S.F. ; Jaramillo T.F. ; Stephens I.E.L. ; Norskov J.K. ; Chorkendorff I. Nature 2019, 570, 504.
|
[27] |
(a) Aika K. ; Hori H. ; Ozaki A. J. Catal. 1972, 27, 424.
|
(b) Gong Y.T. ; Wu J.Z. ; Kitano M. ; Wang J.J. ; Ye T.N. ; Li J. ; Kobayashi Y. ; Kishida K. ; Abe H. ; Niwa Y. ; Yang H.S. ; Tada T. ; Hosono H. Nat. Catal. 2018, 1, 178.
|
|
[28] |
Imbihl R. ; Behm R.J. ; Etrl G. ; Moritz W. Surf. Sci. 1982, 123, 129.
|
[29] |
Somorjai G. ; Materer N. Top. Catal. 1994, 1, 215.
|
[30] |
Zheng J.W. ; Liao F.L. ; Wu S. ; Jones G. ; Chen T.Y. ; Fellowes J. ; Sudmeier T. ; McPherson I.J. ; Wilkinson I. ; Tsang S.C.E. Angew. Chem. Int. Ed. 2019, 58, 17335.
|
[31] |
Chen S.M. ; Perathoner S. ; Ampelli C. ; Mebrahtu C. ; Su D.S. ; Centi G. Angew. Chem. Int. Ed. 2017, 56, 2699.
|
[32] |
Qiao B.T. ; Wang A.Q. ; Yang X.F. ; Allard L.F. ; Jiang Z. ; Cui Y.T. ; Liu J.Y. ; Li J. ; Zhang T. Nat. Chem. 2011, 3, 634.
|
[33] |
Zhang S.B. ; Jin M. ; Shi T.F. ; Han M.M. ; Sun Q. ; Lin Y. ; Ding Z.H. ; Zheng L.R. ; Wang G.Z. ; Zhang Y.X. ; Zhang H.M. ; Zhao H.J. Angew. Chem. Int. Ed. 2020, 59, 13423.
|
[34] |
Wang M.F. ; Liu S.S. ; Qian T. ; Liu J. ; Zhou J.Q. ; Ji H.Q. ; Xiong J. ; Zhong J. ; Yan C.L. Nat. Commun. 2019, 10, 341.
|
[35] |
Kitano M. ; Inoue Y. ; Yamazaki Y. ; Hayashi F. ; Kanbara S. ; Matsuishi S. ; Yokoyama T. ; Kim S.W. ; Hara M. ; Hosono H. Nat. Chem. 2012, 4, 934.
|
[36] |
Dahl S. ; Logadottir A. ; Egeberg R.C. ; Larsen J.H. ; Chorkendorff I. ; Tornqvist E. ; Norskov J.K. Phys. Rev. Lett. 1999, 83, 1814.
|
[37] |
(a) Szmigiel D. ; Rarog-Pilecka W. ; Miskiewicz E. ; Glinski M. ; Kielak M. ; Kaszkur M. ; Kowalczyk Z. Appl. Catal. A-Gen. 2004, 273, 105.
|
(b) Rarog-Pilecka W. ; Miskiewicz E. ; Szmigiel D. ; Kowalczyk Z. J. Catal. 2005, 231, 11.
|
|
[38] |
Peng W. ; Luo M. ; Xu X.D. ; Jiang K. ; Peng M. ; Chen D.C. ; Chan T.S. ; Tan Y.W. Adv. Energy Mater. 2020, 2001364.
|
[39] |
Geng Z.G. ; Liu Y. ; Kong X.D. ; Li P. ; Li K. ; Liu Z.Y. ; Du J.J. ; Shu M. ; Si R. ; Zeng J. Adv. Mater. 2018, 30, 1803498.
|
[40] |
Gronberg K.L.C. ; Gormal C.A. ; Durrant M.C. ; Smith B.E. ; Henderson R.A. J. Am. Chem. Soc. 1998, 120, 10613.
|
[41] |
Sippel D. ; Rohde M. ; Netzer J. ; Trncik C. ; Gies J. ; Grunau K. ; Djurdjevic I. ; Decamps L. ; Andrade S.L.A. ; Einsle O. Science 2018, 359, 1484.
|
[42] |
Zhao J.X. ; Chen Z.F. J. Am. Chem. Soc. 2017, 139, 12480.
|
[43] |
Han L.L. ; Liu X.J. ; Chen J.P. ; Lin R.Q. ; Liu H.X. ; Lu F. ; Bak S. ; Liang Z.X. ; Zhao S.Z. ; Stavitski E. ; Luo J. ; Adzic R.R. ; Xin H.L. Angew. Chem. Int. Ed. 2019, 58, 2321.
|
[44] |
Huang Y. ; Yang T.T. ; Yang L. ; Liu R. ; Zhang G.Z. ; Jiang J. ; Luo Y. ; Lian P. ; Tang S.B. J. Mater. Chem. A 2019, 7, 15173.
|
[45] |
Feng J. ; Zhu X.J. ; Chen Q.Y. ; Xiong W. ; Cheng X. ; Luo Y.L. ; Alshehri A.A. ; Alzahrani K.A. ; Jiang Z.J. ; Li W. J. Mater. Chem. A 2019, 7, 26227.
|
[46] |
Zhang X.P. ; Kong R.M. ; Du H.T. ; Xia L. ; Qu F.L. Chem. Commun. 2018, 54, 5323.
|
[47] |
Du H.L. ; Gengenbach T.R. ; Hodgetts R. ; MacFarlane D.R. ; Simonov A.N. ACS Sustainable Chem. Eng. 2019, 7, 6839.
|
[48] |
Shi M.M. ; Bao D. ; Li S.J. ; Wulan B.R. ; Yan J.M. ; Jiang Q. Adv. Energy Mater. 2018, 8, 1800124.
|
[49] |
(a) Haruta M. ; Kobayashi T. ; Sano H. ; Yamada N. Chem. Lett. 1987, 16, 405.
|
(b) Ciriminna R. ; Falletta E. ; Della Pina C. ; Teles J.H. Angew. Chem. Int. Ed. 2016, 55, 14210.
|
|
[50] |
Bao D. ; Zhang Q. ; Meng F.L. ; Zhong H.X. ; Shi M.M. ; Zhang Y. ; Yan J.M. ; Jiang Q. ; Zhang X.B. Adv. Mater. 2017, 29, 1604799.
|
[51] |
Wang X.Q. ; Wang W.Y. ; Qiao M. ; Wu G. ; Chen W.X. ; Yuan T.W. ; Xu Q. ; Chen M. ; Zhang Y. ; Wang X.L. ; Wang J. ; Ge J.J. ; Hong X. ; Li Y.F. ; Wu Y. ; Li Y.D. Sci. Bull. 2018, 63, 1246.
|
[52] |
(a) Dehcheshmeh M.M. ; Shervedani R.K. ; Torabi M. Electrochim. Acta 2019, 327, 134895.
|
(b) Li D. ; Chen X.F. ; Lv Y.Z. ; Zhang G.Y. ; Huang Y. ; Liu W. ; Li Y. ; Chen R.S. ; Nuckolls C. ; Ni H.W. Appl. Catal. B-Environ. 2020, 269, 118824.
|
|
(c) Luo Y.P. ; Huang D.K. ; Li M. ; Xiao X. ; Shi W.N. ; Wang M.K. ; Su J. ; Shen Y. Electrochim. Acta 2016, 219, 187.
|
|
[53] |
Hao R. ; Sun W.M. ; Liu Q. ; Liu X.L. ; Chen J.L. ; Lv X.W. ; Li W. ; Liu Y.P. ; Shen Z.R. Small 2020, 16, 2000015.
|
[54] |
(a) Wu T.W. ; Zhao H.T. ; Zhu X.J. ; Xing Z. ; Liu Q. ; Liu T. ; Gao S.Y. ; Liu S.Y. ; Chen G. ; Asiri A.M. ; Zhang Y.N. ; Sun X.P. Adv. Mater. 2020, 2000299.
|
(b) Lv X. ; Wang F.Y. ; Du J. ; Liu Q. ; Luo Y.S. ; Lu S.Y. ; Chen G. ; Gao S.Y. ; Zheng B.Z. Sun X.P. Sustain. Energy Fuels 2020, 4, 4469.
|
|
(c) Xia L. ; Li B.H. ; Zhang Y. ; Zhang R. ; Ji L. ; Chen H.Y. ; Cui G.W. ; Zheng H.G. ; Sun X.P. ; Xie F.Y. ; Liu Q. Inorg. Chem. 2019, 58, 2257.
|
|
(d) Li C.B. ; Yu J.L. ; Yang L. ; Zhao J.X. ; Kong W. H. ; Wang T. ; Asiri A.M. ; Li Q. ; Sun X.P. Inorg. Chem. 2019, 58, 15, 9597.
|
|
(e) Li C.B. ; Ma D.W. ; Mou S.Y. ; Luo Y.S. ; Ma B.Y. ; Lu S.Y. ; Cui G.W. ; Li Q. ; Liu Q. ; Sun X.P. J. Energy Chem. 2020, 50, 402.
|
|
[55] |
Li L.Q. ; Tang C. ; Xia B.Q. ; Jin H.Y. ; Zheng Y. ; Qiao S.Z. ACS Catal. 2019, 9, 2902.
|
[56] |
Zhang R. ; Ji L. ; Kong W.H. ; Wang H.B. ; Zhao R.B. ; Chen H.Y. ; Li T.S. ; Li B.H. ; Luo Y.L. ; Sun X.P. Chem. Commun. 2019, 55, 5263.
|
[57] |
Han Z. ; Choi C. ; Hong S. ; Wu T. ; Soo Y. ; Yung Y. ; Qiu J. ; Sun Z. Appl. Catal. B-Environ. 2019, 257, 117896.
|
[58] |
(a) Zhang Y.Q. ; Ouyang B. ; Xu J. ; Chen S. ; Rawat R.S. ; Fan H.J. Adv. Energy Mater. 2016, 6, 1600221.
|
(b) Hammer B. ; Norskov J.K. Nature 1995, 376, 238.
|
|
[59] |
Zhang L. ; Ji X.Q. ; Ren X. ; Ma Y.J. ; Shi X.F. ; Tian Z.Q. ; Asiri A.M. ; Chen L. ; Tang B. ; Sun. X. P. Adv. Mater. 2018, 30, 1800191.
|
[60] |
Ren X. ; Cui G.W. ; Chen L. ; Xie F.Y. ; Wei Q. ; Tian Z.Q. ; Sun X.P. Chem. Commun. 2018, 54, 8474.
|
[61] |
Zhang R. ; Guo H.R. ; Yang L. ; Wang Y. ; Niu Z.G. ; Huang H. ; Chen H.Y. ; Xia L. ; Li T.S. ; Shi X.F. ; Sun X.P. ; Li B.H. ; Liu Q. ChemElectroChem 2019, 6, 1014.
|
[62] |
Cheng X. ; Wang J.W. ; Xiong W. ; Wang T. ; Wu T.W. ; Lu S.Y. ; Chen G. ; Gao S.Y. ; Shi X.F. ; Jiang Z.J. ; Niu X.B. ; Sun X.P. ChemNanoMat 2020, 6, 1315.
|
[63] |
(a) Wang Y.H. ; Cui X.Q. ; Zhang Y.Y. ; Zhang L.J. ; Gong X.G. ; Zheng G.F. Adv. Mater. 2016, 28, 7626.
|
(b) Chen G.F. ; Cao X.R. ; Wu S.Q. ; Zeng X.Y. ; Ding L.X. ; Zhu M. ; Wang H.H. J. Am. Chem. Soc. 2017, 139, 9771.
|
|
[64] |
Lee H.K. ; Koh C.S.L. ; Lee Y.H ; Liu C. ; Phang I.Y. ; Han X.M. ; Tsung C.K. ; Ling X.Y. Sci. Adv. 2018, 4, 3208.
|
[65] |
Tong Y.Y. ; Guo H.P. ; Liu D.L. ; Yan X. ; Su P.P. ; Liang J. ; Zhou S. ; Liu J. ; Lu G.Q. ; Dou S.X. Angew. Chem. Int. Ed. 2020, 132, 7356.
|
[66] |
Tao H.C. ; Choi C. ; Ding L.X. ; Jiang Z. ; Hang Z.S. ; Jia M.W. ; Fan Q. ; Gao Y.N. ; Wang H.H. ; Robertson A.W. ; Hong S. ; Jung Y.S. ; Liu S.Z. ; Sun Z.Y. Chem 2019, 5, 204.
|
[67] |
Vojvodic A. ; Medford A.J. ; Studt F. ; Abild-Pedersen F. ; Khan T.S. ; Bligaard T. ; Norskov J.K. Chem. Phys. Lett. 2014, 598, 108.
|
[68] |
(a) Nazemi M. ; El-Sayed M.A. J. Phys. Chem. C 2019, 123, 11422.
|
(b) Manjuatha R. ; Schechter A. Electrochem. Commun. 2018, 90, 96.
|
|
(c) Chang B. ; Deng L.Q. ; Wang S.Z. ; Shi D. ; Ai Z.Z. ; Jiang H.H. ; Shao Y.L. ; Zhang L. ; Shen J.X. ; Wu Y.Z. ; Hao X.P. J. Mater. Chem. A 2020, 8, 91.
|
|
[69] |
Qin B.H. ; Li Y.H. ; Zhang Q. ; Yang G.X. ; Liang H. ; Peng F. Nano Energy 2020, 68, 104374.
|
[70] |
(a) Kowalczyk Z. ; Sentek J. ; Jodzis S. ; Muhler M. ; Hinrichsen O. J. Catal. 1997, 169, 407.
|
(b) Kowalczyk Z. Catal. Lett. 1996, 37, 173.
|
|
(c) Narasimharao K. ; Seetharamulu P. ; Rao K.S.R. ; Basahel S.N. J. Mol. Catal. A-Chem. 2016, 411, 157.
|
|
[71] |
Hao Y.C. ; Guo Y. ; Chen L.W. ; Shu M. ; Wang X.Y. ; Bu T.A. ; Gao W.Y. ; Zhang N. ; Su X. ; Feng X. ; Zhou J.W. ; Wang B. ; Hu C.W. ; Yin A.X. ; Si R. ; Zhang Y.W. ; Yan C.H. Nat. Catal. 2019, 2, 448.
|
[72] |
(a) Su L. ; Han D.D. ; Zhu G.J. ; Xu H. ; Luo W. ; Wang L.J. ; Jiang W. ; Dong A.G. ; Yang J.P. Nano Lett. 2019, 19, 5423.
|
(b) Guillette L.J. ; Edwards T.M. Integr. Comp. Biol. 2005, 45, 19.
|
|
[73] |
(a) Dima G.E. ; Beltramo G.L. ; Koper M.T.M. Electrochim. Acta 2005, 50, 4318.
|
(b) DeVooy A.C.A. ; Koper M.T.M. ; Van Santen R.A .; Van Veen J. A.R . J. Electroanal. Chem. 2001, 506, 127.
|
|
(c) Ye T. ; Durkin D.P. ; Banek N.A. ; Wagner M.J. ; Shuai D.M. ACS Appl. Mater. Interfaces 2017, 9, 27421.
|
|
(d) Zhang R. ; Shuai D. ; Guy K.A. ; Shapley J.R. ; Strathmann T.J. ; Werth C.J. ChemCatChem 2013, 5, 313.
|
|
[74] |
Zhang X. ; Wang Y.T. ; Liu C.B. ; Yu Y.F. ; Liu S.Y. ; Zhang B. Chem. Eng. J. 2021, 403, 126269.
|
[75] |
Wang Y.T. ; Zhou W. ; Jia R.R. ; Yu Y.F. ; Zhang B. Angew. Chem. Int. Ed. 2020, 59, 5350.
|
[76] |
Li J. ; Zhan G.M. ; Yang J.H. ; Quan F.J. ; Mao C.L. ; Liu Y. ; Wang B. ; Lei F.C. ; Li L.J. ; Chan A.W.M. ; Xu L.P. ; Shi Y.B. ; Du Y. ; Hao W.C. ; Wong P.K. ; Wang J.F. ; Dou S.X. ; Zhang L.Z. ; Yu J.C. J. Am. Chem. Soc. 2020, 142, 7036.
|
[77] |
Wang Y.T. ; Yu Y.F. ; Jia R.R. ; Zhang C. ; Zhang B. Natl. Sci. Rev. 2019, 6, 730.
|
[78] |
(a) Zhu L. ; Zhang L. ; Qu H.X ,; Zhong Q. J. Mol. Catal. A-Chem. 2015, 409, 207.
|
(b) Fritz A. ; Pitchon V. Appl. Catal. B-Environ. 1997, 13, 1.
|
|
[79] |
(a) Koebel M. ; Elsener M. ; Madia G. Ind. Eng. Chem. Res. 2001, 40, 52.
|
(b) Koebel M. J. Catal. 2002, 209, 159.
|
|
[80] |
Long J. ; Chen S.M. ; Zhang Y.L. ; Guo C.X. ; Fu X.Y. ; Deng D.H. ; Xiao J.P. Angew. Chem. Int. Ed. 2020, 59, 9711.
|
[81] |
(a) Li R.G. ; Zhang F.X. ; Wang D.G. ; Yang J.X. ; Li M.R. ; Zhu J. ; Zhou X. ; Han H.X. ; Li C. Nat. Commun. 2013, 4, 1432.
|
(b) Dong B.B. ; Cui J.Y. ; Gao Y.Y. ; Qi Y. ; Zhang F.X. ; Li C. Adv. Mater. 2019, 31, 1808185.
|
[1] | Yining Ma, Run Shi, Tierui Zhang. Research Progress on Triphase Interface Electrocatalytic Carbon Dioxide Reduction [J]. Acta Chimica Sinica, 2021, 79(4): 369-377. |
[2] | Feng Sheng, Gao Wenbo, Cao Hujun, Guo Jianping, Chen Ping. Advances in the Chemical Looping Ammonia Synthesis [J]. Acta Chimica Sinica, 2020, 78(9): 916-927. |
[3] | Liu Shengwei, Zhao Jianjun, Xu Yiming. Larger Adsorption Effect of Fluoride than Phosphate on Phenol Degradation over the Irradiated Anatase TiO2 and Pt/TiO2 [J]. Acta Chim. Sinica, 2019, 77(4): 351-357. |
[4] | Wu Kuangheng, Zhou Yawei, Ma Xianyin, Ding Chen, Cai Wenbin. Controlled Synthesis of Gold-Platinum Catalysts for Ethanol Electro-oxidation Reaction [J]. Acta Chim. Sinica, 2018, 76(4): 292-297. |
[5] | Tao Xiongxin, Li Li, Qi Xueqiang, Wei Zidong. Preparation and Electrochemical Properties of Honeycomb-like Pt-Ni-P/Ti Electrode for Methanol Oxidation [J]. Acta Chim. Sinica, 2017, 75(2): 237-240. |
[6] | Song Congying, Sun Xun, Ye Ke, Zhu Kai, Cheng Kui, Yan Jun, Cao Dianxue, Wang Guiling. Electrocatalytic Activity of MnO2 Supported on Reduced Graphene Oxide Modified Ni Foam for H2O2 Reduction [J]. Acta Chim. Sinica, 2017, 75(10): 1003-1009. |
[7] | Huang Gang, Chen Yuzhen, Jiang Hailong. Metal-Organic Frameworks for Catalysis [J]. Acta Chimica Sinica, 2016, 74(2): 113-129. |
[8] | Li Aichang, Li Jianfei, Liu Yalu, Zhang Jianping, Zhao Liping, Lu Yanhong. Photoelectrocatalytic Properties and Reaction Mechanism of (Ni-Mo)/TiO2 Film Electrode for Degradation of Rhodamine B at Negative Bias [J]. Acta Chimica Sinica, 2013, 71(05): 815-821. |
[9] | Wang Ziqing, Chen Geng, Lin Jianxin, Wang Rong, Wei Kemei. Preparation of Ru/Ba-ZrO2 Catalyst and Its Performance for Ammonia Synthesis [J]. Acta Chimica Sinica, 2013, 71(02): 205-212. |
[10] | Sun Mojie, Hu Quan, Li Jian, Liu Chunguang, Shen Yang. Preparation of ZnFe2O4/TiO2 Nanotube Array Electrode and Photoelectrocatalysis Degradation of Phenol [J]. Acta Chimica Sinica, 2013, 71(02): 213-220. |
[11] | Zheng Longzhen, Tao Kun, Xiong Leyan, Ye Dan, Han Kui, Ji Yi. Electrocatalytic Activity of Fe/N/C Catalyst for the Oxygen Reduction Reaction in Alkaline Electrolyte [J]. Acta Chimica Sinica, 2012, 70(22): 2342-2346. |
[12] | Zhang Qiang, Yao Zhangquan, Zhou Rong, Du Yukou, Yang Ping. Fabrication of Ag/Au/Pt Composite Catalysts and Their Electrocatalytic Oxidation for Formic Acid [J]. Acta Chimica Sinica, 2012, 70(20): 2149-2154. |
[13] | Zhang Caiping, Guo Qinghua, Xu Minmin, Yuan Yaxian, Yao Jianlin, Gu Renao. Electrocatalysis on Oxidation of Methanol and SERS Investigations of Au@Pt Monolayer Film [J]. Acta Chimica Sinica, 2012, 70(12): 1327-1331. |
[14] | Xu Mai, Wang Fengwu, Wei Yijun, Zhu Qiyong, Fang Wenyan, Zhu Chuangao. Ti/nano TiO2-ZrO2 Electrode with High Catalytic Activity for Electrocatalytic Reduction of Maleic Acid to Succinic Acid [J]. Acta Chimica Sinica, 2012, 70(12): 1407-1411. |
[15] | Long Ping, Li Qingfen, Xu Likun, Xue Lili, Song Hongqing. Electrochemical Impedance Spectroscopy (EIS) Study of Ru-La Oxide Coatings in NaCl Solution [J]. Acta Chimica Sinica, 2012, 70(10): 1166-1172. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||