Acta Chimica Sinica ›› 2022, Vol. 80 ›› Issue (6): 772-780.DOI: 10.6023/A22010030 Previous Articles Next Articles
Article
王丹a, 封波a, 张晓昕b, 刘亚楠a, 裴燕a, 乔明华a,*(), 宗保宁b,*()
投稿日期:
2022-01-16
发布日期:
2022-07-07
通讯作者:
乔明华, 宗保宁
基金资助:
Dan Wanga, Bo Fenga, Xiaoxin Zhangb, Yanan Liua, Yan Peia, Minghua Qiaoa(), Baoning Zongb()
Received:
2022-01-16
Published:
2022-07-07
Contact:
Minghua Qiao, Baoning Zong
Supported by:
Share
Dan Wang, Bo Feng, Xiaoxin Zhang, Yanan Liu, Yan Pei, Minghua Qiao, Baoning Zong. Nitrogen-doped Carbon Pyrolyzed from ZIF-8 for Electrocatalytic Oxygen Reduction to Hydrogen Peroxide[J]. Acta Chimica Sinica, 2022, 80(6): 772-780.
Catalyst | Bulk compositiona(w)/% | SBETb/ (m2•g-1) | Vporeb/ (cm3•g-1) | dporeb/ nm | |||
---|---|---|---|---|---|---|---|
C | H | O | N | ||||
p-ZIF-900 | 62.10 | 3.71 | 23.12 | 11.05 | 870(610) | 0.61(0.32) | 5.6 |
p-ZIF-950 | 73.11 | 3.89 | 14.42 | 8.56 | 913(636) | 0.85(0.34) | 9.9 |
p-ZIF-1000 | 83.22 | 4.96 | 6.85 | 4.94 | 1190(761) | 0.83(0.41) | 5.1 |
Catalyst | Bulk compositiona(w)/% | SBETb/ (m2•g-1) | Vporeb/ (cm3•g-1) | dporeb/ nm | |||
---|---|---|---|---|---|---|---|
C | H | O | N | ||||
p-ZIF-900 | 62.10 | 3.71 | 23.12 | 11.05 | 870(610) | 0.61(0.32) | 5.6 |
p-ZIF-950 | 73.11 | 3.89 | 14.42 | 8.56 | 913(636) | 0.85(0.34) | 9.9 |
p-ZIF-1000 | 83.22 | 4.96 | 6.85 | 4.94 | 1190(761) | 0.83(0.41) | 5.1 |
Catalyst | Surface N/at% | Fraction in surface N | Surface graphitic N/at% | |||
---|---|---|---|---|---|---|
Pyridinic N | Pyrrolic N | Graphitic N | Oxidic N | |||
p-ZIF-900 | 12.0 | 0.645 | 0.203 | 0.119 | 0.033 | 1.43 |
p-ZIF-950 | 8.5 | 0.562 | 0.113 | 0.263 | 0.062 | 2.23 |
p-ZIF-1000 | 4.7 | 0.414 | 0.255 | 0.294 | 0.037 | 1.38 |
Catalyst | Surface N/at% | Fraction in surface N | Surface graphitic N/at% | |||
---|---|---|---|---|---|---|
Pyridinic N | Pyrrolic N | Graphitic N | Oxidic N | |||
p-ZIF-900 | 12.0 | 0.645 | 0.203 | 0.119 | 0.033 | 1.43 |
p-ZIF-950 | 8.5 | 0.562 | 0.113 | 0.263 | 0.062 | 2.23 |
p-ZIF-1000 | 4.7 | 0.414 | 0.255 | 0.294 | 0.037 | 1.38 |
[1] |
Li, H. B.; Zheng, B.; Pan, Z. Y.; Zong, B. N.; Qiao, M. H. Front. Chem. Sci. Eng. 2018, 12, 124.
doi: 10.1007/s11705-017-1676-5 |
[2] |
Siahrostami, S.; Verdaguer-Casadevall, A.; Karamad, M.; Deiana, D.; Malacrida, P.; Wickman, B.; Escudero-Escribano, M.; Paoli, E. A.; Frydendal, R.; Hansen, T. W.; Chorkendorff, I.; Stephens, I. E. L.; Rossmeisl, J. Nat. Mater. 2013, 12, 1137.
doi: 10.1038/nmat3795 pmid: 24240242 |
[3] |
Campos-Martin, J. M.; Blanco-Brieva, G.; Fierro, J. L. G. Angew. Chem. Int. Ed. 2006, 45, 6962.
doi: 10.1002/anie.200503779 |
[4] |
Yang, S.; Verdaguer-Casadevall, A.; Arnarson, L.; Silvioli, L.; Colic, V.; Frydendal, R.; Rossmeisl, J.; Chorkendorff, I.; Stephens, I. E. L. ACS Catal. 2018, 8, 4064.
doi: 10.1021/acscatal.8b00217 |
[5] |
Freakley, S. J.; He, Q.; Harrhy, J. H.; Lu, L.; Crole, D. A.; Morgan, D. J.; Ntainjua, E. N.; Edwards, J. K.; Carley, A. F.; Borisevich, A. Y.; Kiely, C. J.; Hutchings, G. J. Science 2016, 351, 965.
doi: 10.1126/science.aad5705 pmid: 26917769 |
[6] |
Sun, Y. Y.; Li, S.; Jovanov, Z. P.; Bernsmeier, D.; Wang, H.; Paul, B.; Wang, X.; Kühl, S.; Strasser, P. ChemSusChem 2018, 11, 3388.
doi: 10.1002/cssc.201801583 |
[7] |
Xia, C.; Xia, Y.; Zhu, P.; Fan, L.; Wang, H. T. Science 2019, 366, 226.
doi: 10.1126/science.aay1844 |
[8] |
Zhang, J.; Zhang, H.; Cheng, M. J.; Lu, Q. Small 2020, 16, 1902845.
doi: 10.1002/smll.201902845 |
[9] |
Yang, S.; Kim, J.; Tak, Y. J.; Soon, A.; Lee, H. Angew. Chem. Int. Ed. 2016, 55, 2058.
doi: 10.1002/anie.201509241 |
[10] |
Wang, Y. L.; Li, S. S.; Yang, X. H.; Xu, G. Y.; Zhu, Z. C.; Chen, P.; Li, S. Q. J. Mater. Chem. A 2019, 7, 21329.
doi: 10.1039/C9TA04788C |
[11] |
Zhao, H. Y.; Shen, X. Q.; Chen, Y.; Zhang, S. N.; Gao, P.; Zhen, X. J.; Li, X. H.; Zhao, G. H. Chem. Commun. 2019, 55, 6173.
doi: 10.1039/C9CC02580D |
[12] |
Sa, Y. J.; Kim, J. H.; Joo, S. H. Angew. Chem. Int. Ed. 2019, 58, 1100.
doi: 10.1002/anie.201812435 |
[13] |
Zhou, W.; Meng, X.; Gao, J.; Alshawabkeh, A. N. Chemosphere 2019, 225, 588.
doi: S0045-6535(19)30478-3 pmid: 30903840 |
[14] |
Tian, X.; Zhao, X.; Su, Y. Q.; Wang, L.; Wang, H.; Dang, D.; Chi, B.; Liu, H.; Hensen, E. J. M.; Lou, X. W.; Xia, B. Y. Science 2019, 366, 850.
doi: 10.1126/science.aaw7493 |
[15] |
Gong, K.; Du, F.; Xia, Z.; Durstock, M.; Dai, L. Science 2009, 323, 760.
doi: 10.1126/science.1168049 |
[16] |
Sun, Y. Y.; Sinev, I.; Ju, W.; Bergmann, A.; Dresp, S.; Kühl, S.; Spöri, C.; Schmies, H.; Wang, H.; Bernsmeier, D.; Paul, B.; Schmack, R.; Kraehnert, R.; Roldan Cuenya, B.; Strasser, P. ACS Catal. 2018, 8, 2844.
doi: 10.1021/acscatal.7b03464 |
[17] |
Jiang, Y.; Ni, P.; Chen, C.; Lu, Y.; Yang, P.; Kong, B.; Fisher, A.; Wang, X. Adv. Energy Mater. 2018, 8, 1801909.
doi: 10.1002/aenm.201801909 |
[18] |
Melchionna, M.; Fornasiero, P.; Prato, M. Adv. Mater. 2019, 31, 1802920.
doi: 10.1002/adma.201802920 |
[19] |
Lu, X. Q.; Cao, S. F.; Wei, X. F.; Li, S. R.; Wei, S. X. Acta Chim. Sinica 2020, 78, 1001. (in Chinese)
doi: 10.6023/A20060223 |
(鲁效庆, 曹守福, 魏晓飞, 李邵仁, 魏淑贤, 化学学报, 2020, 78, 1001.)
doi: 10.6023/A20060223 |
|
[20] |
Jia, N.; Yang, T.; Shi, S.; Chen, X.; An, Z.; Chen, Y.; Yin, S.; Chen, P. ACS Sustainable Chem. Eng. 2020, 8, 2883.
doi: 10.1021/acssuschemeng.9b07047 |
[21] |
Pizzutilo, E.; Kasian, O.; Choi, C. H.; Cherevko, S.; Hutchings, G. J.; Mayrhofer, K. J. J.; Freakley, S. J. Chem. Phys. Lett. 2017, 683, 436.
doi: 10.1016/j.cplett.2017.01.071 |
[22] |
He, D. Q.; Zhong, L. J.; Gan, S. Y.; Xie, J. X.; Wang, W.; Liu, Z. B.; Guo, W.; Yang, X.; Niu, L. Electrochim. Acta 2021, 371, 137721.
doi: 10.1016/j.electacta.2021.137721 |
[23] |
Xi, J.; Yang, S.; Silvioli, L.; Cao, S.; Liu, P.; Chen, Q.; Zhao, Y.; Sun, H.; Hansen, J. N.; Haraldsted, J. B.; Kibsgaard, J.; Rossmeisl, J.; Bals, S.; Wang, S.; Chorkendorff, I. J. Catal. 2021, 393, 313.
doi: 10.1016/j.jcat.2020.11.020 |
[24] |
Shen, R. G.; Chen, W. X.; Peng, Q.; Lu, S. Q.; Zheng, L. R.; Cao, X.; Wang, Y.; Zhu, W.; Zhang, J. T.; Zhuang, Z. B.; Chen, C.; Wang, D. G.; Li, Y. D. Chem 2019, 5, 2099.
doi: 10.1016/j.chempr.2019.04.024 |
[25] |
Gao, J. J.; Yang, H. B.; Huang, X.; Hung, S. F.; Cai, W. Z.; Jia, C. M.; Miao, S.; Chen, H. M.; Yang, X. F.; Huang, Y. Q.; Zhang, T.; Liu, B. Chem 2020, 6, 658.
doi: 10.1016/j.chempr.2019.12.008 |
[26] |
Jiang, K.; Back, S.; Akey, A. J.; Xia, C.; Hu, Y.F.; Liang, W. T.; Schaak, D.; Stavitski, E.; Norskov, J. K.; Siahrostami, S.; Wang, H. T. Nat. Commun. 2019, 10, 3997.
doi: 10.1038/s41467-019-11992-2 pmid: 31488826 |
[27] |
Sun, Y.; Silvioli, L.; Sahraie, N. R.; Ju, W.; Li, J.; Zitolo, A.; Li, S.; Bagger, A.; Arnarson, L.; Wang, X.; Moeller, T.; Bernsmeier, D.; Rossmeisl, J.; Jaouen, F.; Strasser, P. J. Am. Chem. Soc. 2019, 141, 12372.
doi: 10.1021/jacs.9b05576 |
[28] |
Perazzolo, V.; Durante, C.; Pilot, R.; Paduano, A.; Zheng, J.; Rizzi, G. A.; Martucci, A.; Granozzi, G.; Gennaro, A. Carbon 2015, 95, 949.
doi: 10.1016/j.carbon.2015.09.002 |
[29] |
Hasché, F.; Oezaslan, M.; Strasser, P.; Fellinger, T. J. Energy Chem. 2016, 25, 251.
doi: 10.1016/j.jechem.2016.01.024 |
[30] |
Xia, Y.; Zhao, X. H.; Xia, C.; Wu, Z. Y.; Zhu, P.; Kim, J. Y.; Bai, X. W.; Gao, G. H.; Hu, Y. F.; Zhong, J.; Liu, Y. Y.; Wang, H.T. Nat. Commun. 2021, 12, 4225.
doi: 10.1038/s41467-021-24329-9 |
[31] |
Chen, S. Y.; Luo, T.; Chen, K. J.; Lin, Y. Y.; Fu, J. W.; Liu, K.; Cai, C.; Wang, Q. Y.; Li, H. J. W.; Li, X. Q.; Hu, J. H.; Li, H. M.; Zhu, M. S.; Liu, M. Angew. Chem. Int. Ed. 2021, 60, 16607.
doi: 10.1002/anie.202104480 |
[32] |
Xu, Z. H.; Shen, L. M.; Wu, Q.; Sun, T.; Xu, Y. Y.; Li, D. Q.; Du, L. Y.; Yang, L. J.; Wang, X. Z.; Hu, Z. Acta Chim. Sinica 2015, 73, 793. (in Chinese)
|
(许智慧, 沈丽明, 吴强, 孙涛, 徐宇洋, 黎聃勤, 杜玲玉, 杨立军, 王喜章, 胡征, 化学学报, 2015, 73, 793.)
doi: 10.6023/A15050354 |
|
[33] |
Qin, M. C.; Fan, S. Y.; Wang, L.; Gan, G. Q.; Wang, X. Y.; Cheng, J.; Hao, Z. P.; Li, X. Y. J. Colloid Interface Sci. 2020, 562, 540.
doi: 10.1016/j.jcis.2019.11.080 |
[34] |
Chen, S. C.; Chen, Z. H.; Siahrostami, S.; Higgins, D.; Nordlund, D.; Sokaras, D.; Kim, T. R.; Liu, Y. Z.; Yan, X. Z.; Nilsson, E.; Sinclair, R.; Nørskov, J. K.; Jaramillo, T. F.; Bao, Z. N. J. Am. Chem. Soc. 2018, 140, 7851.
doi: 10.1021/jacs.8b02798 |
[35] |
Han, G. F.; Li, F.; Zou, W.; Karamad, M.; Jeon, J. P.; Kim, S. W.; Kim, S. J.; Bu, Y. F.; Fu, Z. P.; Lu, Y. L.; Siahrostami, S.; Baek, J. B. Nat. Commun. 2020, 11, 7293.
|
[36] |
Zhao, K.; Su, Y.; Quan, X.; Liu, Y. M.; Chen, S.; Yu, H. T. J. Catal. 2018, 357, 118.
doi: 10.1016/j.jcat.2017.11.008 |
[37] |
Dong, K.; Liang, J.; Wang, Y. Y.; Xu, Z. Q.; Liu, Q.; Luo, Y. L.; Li, T. S.; Li, L.; Shi, X. F.; Asiri, A. M.; Li, Q.; Ma, D. M.; Sun, X. P. Angew. Chem. Int. Ed. 2021, 60, 10583.
doi: 10.1002/anie.202101880 |
[38] |
Fellinger, T.; Hasché, F.; Strasser, P.; Antonietti, M. J. Am. Chem. Soc. 2012, 134, 4072.
doi: 10.1021/ja300038p |
[39] |
Zhou, Y.; Chen, G.; Zhang, J. J. J. Mater. Chem. A 2020, 8, 20849.
doi: 10.1039/D0TA07900F |
[40] |
Zhang, L. J.; Su, Z. X.; Jiang, F. L.; Yang, L. L.; Qian, J. J.; Zhou, Y. F.; Li, W. M.; Hong, M. C. Nanoscale 2014, 6, 6590.
doi: 10.1039/C4NR00348A |
[41] |
Guo, W. J.; Yu, J.; Dai, Z.; Hou, W. Z. Acta Chim. Sinica 2019, 77, 1203. (in Chinese)
doi: 10.6023/A19080316 |
(郭文娟, 于洁, 代昭, 侯伟钊, 化学学报, 2019, 77, 1203.)
doi: 10.6023/A19080316 |
|
[42] |
Liu, Y.; Quan, X.; Fan, X.; Wang, H.; Chen, S. Angew. Chem. Int. Ed. 2015, 54, 6837.
doi: 10.1002/anie.201502396 |
[43] |
Sun, Y. H.; Qi, Y. X.; Shen, Y.; Jing, C. J.; Chen, X. X.; Wang, X. X. Acta Chim. Sinica 2020, 78, 147. (in Chinese)
doi: 10.6023/A19090338 |
(孙延慧, 齐有啸, 申优, 井翠洁, 陈笑笑, 王新星, 化学学报, 2020, 78, 147.)
doi: 10.6023/A19090338 |
|
[44] |
Kaneti, Y. V.; Dutta, S.; Hossain, M. S. A.; Shiddiky, M. J. A.; Tung, K. L.; Shieh, F. K.; Tsung, C. K.; Wu, K. C. W.; Yamauchi, Y. Adv. Mater. 2017, 29, 1700213.
doi: 10.1002/adma.201700213 |
[45] |
Stanczyk, K.; Dziembaj, R.; Piwowarska, Z.; Witkowski, S. Carbon 1995, 33, 1383.
doi: 10.1016/0008-6223(95)00084-Q |
[46] |
Amali, A. J.; Sun, J. K.; Xu, Q. Chem. Commun. 2014, 50, 1519.
doi: 10.1039/C3CC48112C |
[47] |
Wei, S. J.; Li, A.; Liu, J. C.; Chen, W. X.; Gong, Y.; Zhang, Q. H.; Cheong, W. C.; Wang, Y.; Zheng, L. R.; Xiao, H.; Chen, C.; Wang, D. S.; Peng, Q.; Gu, L.; Han, X. D.; Li, J.; Li, Y. D. Nat. Nanotechnol. 2018, 13, 856.
doi: 10.1038/s41565-018-0197-9 |
[48] |
Lu, Z.; Chen, G.; Siahrostami, S.; Chen, Z.; Liu, K.; Xie, J.; Liao, L.; Wu, T.; Lin, D.; Liu, Y.; Jaramillo, T. F.; Nørskov, J. K.; Cui, Y. Nat. Catal. 2018, 1, 156.
doi: 10.1038/s41929-017-0017-x |
[49] |
Perazzolo, V.; Daniel, G.; Brandiele, R.; Picelli, L.; Rizzi, G. A.; Isse, A. A.; Durante, C. Chem. Eur. J. 2021, 27, 1002.
doi: 10.1002/chem.202003355 |
[50] |
Zhang, P.; Sun, F.; Xiang, Z. H.; Shen, Z. G.; Yun, J.; Cao, D. P. Energy Environ. Sci. 2014, 7, 442.
doi: 10.1039/C3EE42799D |
[51] |
Gu, D. G.; Wang, F. F.; Yan, K.; Ma, R. G.; Wang, J. C. ACS Sustainable Chem. Eng. 2018, 6, 1951.
doi: 10.1021/acssuschemeng.7b03370 |
[52] |
Li, L. Q.; Tang, C.; Zheng, Y.; Xia, B. Q.; Zhou, X. L.; Xu, H. L.; Qiao, S. Z. Adv. Energy Mater. 2020, 10, 2000789.
doi: 10.1002/aenm.202000789 |
[53] |
Chen, S. C.; Chen, Z. H.; Siahrostami, S.; Kim, T. R.; Nordlund, D.; Sokaras, D.; Nowak, S.; To, J. W. F.; Higgins, D.; Sinclair, R.; Nørskov, J. K.; Jaramillo, T. F.; Bao, Z. N. ACS Sustainable Chem. Eng. 2018, 6, 311.
doi: 10.1021/acssuschemeng.7b02517 |
[54] |
Park, J.; Nabae, Y.; Hayakawa, T.; Kakimoto, M. ACS Catal. 2014, 4, 3749.
doi: 10.1021/cs5008206 |
[55] |
Iglesias, D.; Giuliani, A.; Melchionna, M.; Marchesan, S.; Criado, A.; Nasi, L.; Bevilacqua, M.; Tavagnacco, C.; Vizza, F.; Prato, M.; Fornasiero, P. Chem 2018, 4, 106.
doi: 10.1016/j.chempr.2017.10.013 |
[56] |
Zhang, J. Y.; Zhang, G.; Jin, S. Y.; Zhou, Y. J.; Ji, Q. H.; Lan, H. C.; Liu, H. J.; Qu, J. H. Carbon 2020, 163, 154.
doi: 10.1016/j.carbon.2020.02.084 |
[57] |
Contreras, E.; Dominguez, D.; Tiznado, H.; Guerrero-Sanchez, J.; Takeuchi, N.; Alonso-Nunez, G.; Contreras, O. E.; Oropeza- Guzman, M. T.; Romo-Herrera, J. M. Nanoscale 2019, 11, 2829.
doi: 10.1039/c8nr08384c pmid: 30676594 |
[1] | Shan Li, Junxin Lu, Jie Liu, Lvqi Jiang, Wenbin Yi. Electrochemical Synthesis of α-Fluoroalkylated Ketones using Sodium Fluoroalkylsulfinate [J]. Acta Chimica Sinica, 2024, 82(2): 110-114. |
[2] | Ping Li, Qiyu Yang, Jing Zeng, Ran Zhang, Qiuyan Chen, Fei Yan. Effect of Fluorine Doping on the Performance of Reversible Solid Oxide Cells and Related Kinetic Studies [J]. Acta Chimica Sinica, 2024, 82(1): 36-45. |
[3] | Liu Zhenyu, Gan Li-Hua. Molecular Dynamics Simulation of Acetylene Pyrolysis into Fullerenes [J]. Acta Chimica Sinica, 2023, 81(5): 502-510. |
[4] | Zhenhong Yang, Xiaojuan Gan, Shuzhe Wang, Junyuan Duan, Tianyou Zhai, Youwen Liu. Preparation of Metallic Ni3N Nanoparticles and Its Electrooxidation Performance for Ethylene Glycol★ [J]. Acta Chimica Sinica, 2023, 81(11): 1471-1477. |
[5] | Jinjing Liu, Na Yang, Li Li, Zidong Wei. Theoretical Study on the Regulation of Oxygen Reduction Mechanism by Modulating the Spatial Structure of Active Sites on Platinum★ [J]. Acta Chimica Sinica, 2023, 81(11): 1478-1485. |
[6] | Shaobing Yan, Long Jiao, Chuanxin He, Hailong Jiang. Pyrolysis of ZIF-67/Graphene Composite to Co Nanoparticles Confined in N-Doped Carbon for Efficient Electrocatalytic Oxygen Reduction [J]. Acta Chimica Sinica, 2022, 80(8): 1084-1090. |
[7] | Jiawei He, Liu Jiao, Xueyi Cheng, Guanghai Chen, Qiang Wu, Xizhang Wang, Lijun Yang, Zheng Hu. Structural Regulation of Metal Organic Framework-derived Hollow Carbon Nanocages and Their Lithium-Sulfur Battery Performance [J]. Acta Chimica Sinica, 2022, 80(7): 896-902. |
[8] | Yinlong Jiang, Guochao Li, Qingsong Chen, Zhongning Xu, Shanshan Lin, Guocong Guo. Porous Bismuth Nanoflowers Enriched with Lattice Dislocations for Highly Efficient Electrocatalytic Reduction of Carbon Dioxide to Formate※ [J]. Acta Chimica Sinica, 2022, 80(6): 703-707. |
[9] | Pan An, Qinghui Zhang, Zhuang Yang, Jiaxing Wu, Jiaying Zhang, Yajun Wang, Yuming Li, Guiyuan Jiang. Research Progress of Solar Hydrogen Production Technology under Double Carbon Target [J]. Acta Chimica Sinica, 2022, 80(12): 1629-1642. |
[10] | Jinge Wang, Wei Zhou, Jiayi Li, Yani Ding, Jihui Gao. Recent Advances and Performance Enhancement Mechanisms of Pulsed Electrocatalysis [J]. Acta Chimica Sinica, 2022, 80(11): 1555-1568. |
[11] | Pengfei Zhu, Chensi Lou, Yuhan Shi, Chuanyi Wang. Study on Preparation of Ag/AgCl/ZIF-8 Composite and Photocatalytic NO Oxidation Performance [J]. Acta Chimica Sinica, 2022, 80(10): 1385-1393. |
[12] | Yining Ma, Run Shi, Tierui Zhang. Research Progress on Triphase Interface Electrocatalytic Carbon Dioxide Reduction [J]. Acta Chimica Sinica, 2021, 79(4): 369-377. |
[13] | Su Zhan, Fuxiang Zhang. Recent Progress on Electrocatalytic Synthesis of Ammonia Under Amibent Conditions [J]. Acta Chimica Sinica, 2021, 79(2): 146-157. |
[14] | Ni Liao, Xia Zhong, Wen-Bin Liang, Ruo Yuan, Ying Zhuo. Metal-organic Frameworks (MOF)-based Novel Electrochemiluminescence Biosensing Platform for Quantification of H2O2 Releasing from Tumor Cells [J]. Acta Chimica Sinica, 2021, 79(10): 1257-1264. |
[15] | Lu Xiaoqing, Cao Shoufu, Wei Xiaofei, Li Shaoren, Wei Shuxian. Investigation on Oxygen Reduction Reaction Mechanism on S Doped Fe-NC lsolated Single Atoms Catalyst [J]. Acta Chimica Sinica, 2020, 78(9): 1001-1006. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||