Acta Chimica Sinica ›› 2021, Vol. 79 ›› Issue (3): 284-302.DOI: 10.6023/A20090450 Previous Articles     Next Articles



吕敏a,b, 周瑞敏a,b, 吕琨a,b,*(), 魏志祥a,b   

  1. a 中国科学院纳米系统与多级次制造重点实验室 中国科学院纳米科学卓越中心 国家纳米科学中心 北京 100190
    b 中国科学院大学 北京 100049
  • 投稿日期:2020-09-27 发布日期:2020-12-01
  • 通讯作者: 吕琨
  • 作者简介:

    吕敏, 硕士研究生. 2019年6月于青岛科技大学材料科学与工程学院新能源材料与器件专业取得学士学位, 同年9月进入国家纳米科学中心魏志祥研究员课题组开展硕士研究工作. 目前其主要的研究方向为小分子给体材料的设计与合成, 主要研究高结晶性小分子给体材料应用于非富勒烯全小分子有机太阳能电池中对形貌调控的影响.

    周瑞敏, 2015年本科毕业于河南大学化学实验班, 自2015年9月进入国家纳米科学中心(中国科学院大学中丹学院)硕博连读, 研究方向主要是可溶性有机光伏小分子给体的设计合成与器件制备研究. 目前发表的文章包括Nature Communications一篇, Advanced Functional Materials一篇等.

    吕琨, 国家纳米科学中心研究员, 博士生导师. 2004年7月毕业于山东大学化学与化工学院, 获得学士学位; 2009年12月于中国科学院化学研究所获得博士学位; 2010年1月至今, 任职国家纳米科学中心研究员. 研究重点是用于光伏器件的聚合物和小分子半导体材料的合成及其在大面积柔性器件中的应用. 基于以上研究, 发表了90多篇论文, 被引用超过2000次; 并且获得了中国化学会青年化学奖、北京市科技新星计划、中国科学院青年创新促进会优秀会员和国家优秀青年科学基金等基金支持.

    魏志祥, 国家纳米科学中心研究员, 博士生导师. 1997和2000年分别在西安交通大学获得学士和硕士学位, 2003年中国科学院化学研究所获得博士学位. 之后分别在德国马普胶体界面研究所和多伦多大学从事博士后研究. 2006年加入国家纳米中心工作. 主要研究领域为有机光电功能纳米材料与柔性器件, 研究通过自组装方法制备结构和性能可控的有机光电功能纳米材料, 并探索其在手性传感器件、太阳能电池和储能器件等柔性器件中的应用.

    * E-mail:
  • 基金资助:
    项目受国家自然科学基金(21822503); 项目受国家自然科学基金(51973043); 项目受国家自然科学基金(21534003); 项目受国家自然科学基金(21721002); 青年创新促进协会基金资助.

Research Progress of Small Molecule Donors with High Crystallinity in All Small Molecule Organic Solar Cells

Min Lva,b, Ruimin Zhoua,b, Kun Lua,b,*(), Zhixiang Weia,b   

  1. a CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
    b University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2020-09-27 Published:2020-12-01
  • Contact: Kun Lu
  • Supported by:
    National Natural Science Foundation of China(21822503); National Natural Science Foundation of China(51973043); National Natural Science Foundation of China(21534003); National Natural Science Foundation of China(21721002); Youth Innovation Promotion Association.

In the past few decades, organic solar cells (OSCs) have been extensively studied due to their advantages of semitransparency, light-weight and flexibility, which are considered to be an important renewable energy source in the future. Recently, bulk heterojunction all-small molecule organic solar cells (BHJ ASM-OSCs) composed of p-type small molecule donors and n-type non-fullerene acceptors as the active layers have achieved remarkable development and the power conversion efficiencies (PCEs) have exceeded 15%. The advantages of non-fullerene acceptors over fullerene competitors are their easily tunable energy levels, better absorption properties and proper molecular designs, which allow ASM-OSCs to achieve significantly higher open-circuit voltages, higher photocurrents and superior stability, thus extending the device lifetime of OSCs. Compared with p-type polymer donors, p-type small molecule donors have unique advantages, such as well-defined molecular structures, easy purification and low batch-to-batch variations. Although ASM-OSCs are expected to take advantages of non-fullerene acceptors and small molecule donors simultaneously, in consequence of inappropriate crystallinity and nano-scale bi-continuous interpenetrating networks in blended films resulting from similar acceptor-donor-acceptor (A-D-A) structures and physicochemical properties between small molecule donors and non-fullerene acceptors, the PCEs of current state-of-the-art ASM-OSCs are still much lower than that of polymer-based OSCs. In this review, based on the expansion of the central conjugated units of small molecular donors, we summarized the crystallinity of benzodithiophene (BDT), naphthodithiophene (NDT) and dithienobenzodithiophene (DTBDT) donors from the perspective of molecular design and provided suggestions for further molecular design and morphology improvement.

Key words: all small molecule organic solar cell, small molecule donor, central conjugated unit, molecular design, crystallinity