Acta Chimica Sinica ›› 2022, Vol. 80 ›› Issue (5): 614-624.DOI: 10.6023/A22010031 Previous Articles Next Articles
Article
王诗慧, 薛小雨, 程敏, 陈少臣, 刘冲, 周利, 毕可鑫, 吉旭*()
投稿日期:
2022-01-16
发布日期:
2022-05-31
通讯作者:
吉旭
基金资助:
Shihui Wang, Xiaoyu Xue, Min Cheng, Shaochen Chen, Chong Liu, Li Zhou, Kexin Bi, Xu Ji()
Received:
2022-01-16
Published:
2022-05-31
Contact:
Xu Ji
Supported by:
Share
Shihui Wang, Xiaoyu Xue, Min Cheng, Shaochen Chen, Chong Liu, Li Zhou, Kexin Bi, Xu Ji. High-Throughput Computational Screening of Metal-Organic Frameworks for CH4/H2 Separation by Synergizing Machine Learning and Molecular Simulation[J]. Acta Chimica Sinica, 2022, 80(5): 614-624.
Category | Descriptor | Unit |
---|---|---|
Structural Descriptor | largest cavity diameter (LCD) | nm |
pore limiting diameter (PLD) | nm | |
gravimetric surface area (GSA) | m2/g | |
volumetric surface area (VSA) | m2/cm3 | |
crystal density (Density) | g/cm3 | |
helium void fraction (HVF) | — | |
Chemical Descriptor | no. of H atoms (Num H) | — |
no. of C atoms (Num C) | — | |
no. of N atoms (Num N) | — | |
no. of O atoms (Num O) | — | |
total degree of unsaturation (TDU) | [(no. of C atoms×2) + 2- no. of H atoms]/2 | |
metallic percentage (MP) | (no. of metal atoms/ no. of C atoms)×100 | |
electronegative to total ratio (ET ratio) | (no. of electronegative atoms)/ (no. of atoms) | |
weighted electronegativity per atom (WEA) | (sum of weighted a electronegative atoms)/ (no. of atoms) | |
Henry’s coefficient of methane (HC methane) | mol•kg–1•Pa–1 | |
Henry’s coefficient of hydrogen (HC hydrogen) | mol•kg–1•Pa–1 |
Category | Descriptor | Unit |
---|---|---|
Structural Descriptor | largest cavity diameter (LCD) | nm |
pore limiting diameter (PLD) | nm | |
gravimetric surface area (GSA) | m2/g | |
volumetric surface area (VSA) | m2/cm3 | |
crystal density (Density) | g/cm3 | |
helium void fraction (HVF) | — | |
Chemical Descriptor | no. of H atoms (Num H) | — |
no. of C atoms (Num C) | — | |
no. of N atoms (Num N) | — | |
no. of O atoms (Num O) | — | |
total degree of unsaturation (TDU) | [(no. of C atoms×2) + 2- no. of H atoms]/2 | |
metallic percentage (MP) | (no. of metal atoms/ no. of C atoms)×100 | |
electronegative to total ratio (ET ratio) | (no. of electronegative atoms)/ (no. of atoms) | |
weighted electronegativity per atom (WEA) | (sum of weighted a electronegative atoms)/ (no. of atoms) | |
Henry’s coefficient of methane (HC methane) | mol•kg–1•Pa–1 | |
Henry’s coefficient of hydrogen (HC hydrogen) | mol•kg–1•Pa–1 |
VSA | PSA | ||||||
---|---|---|---|---|---|---|---|
Combinationa | Validation set R2 | Test set R2 | Test set RMSE | Validation set R2 | Test set R2 | Test set RMSE | |
RF+CD | 0.879 | 0.910 | 16.658 | 0.814 | 0.842 | 25.481 | |
RF+SD | 0.423 | 0.441 | 57.967 | 0.498 | 0.527 | 48.229 | |
RF+SC | 0.935 | 0.937 | 13.386 | 0.896 | 0.907 | 20.345 | |
RF+SC (未初筛) | 0.833 | 0.707 | 46.124 | 0.868 | 0.869 | 22.041 | |
SVM+SC | 0.816 | 0.802 | 28.446 | 0.827 | 0.808 | 29.383 | |
KNN+SC | 0.721 | 0.759 | 31.306 | 0.754 | 0.759 | 32.907 | |
DT+SC | 0.891 | 0.929 | 16.946 | 0.808 | 0.834 | 27.297 | |
ANN+SC | 0.816 | 0.819 | 25.225 | 0.880 | 0.823 | 28.207 |
VSA | PSA | ||||||
---|---|---|---|---|---|---|---|
Combinationa | Validation set R2 | Test set R2 | Test set RMSE | Validation set R2 | Test set R2 | Test set RMSE | |
RF+CD | 0.879 | 0.910 | 16.658 | 0.814 | 0.842 | 25.481 | |
RF+SD | 0.423 | 0.441 | 57.967 | 0.498 | 0.527 | 48.229 | |
RF+SC | 0.935 | 0.937 | 13.386 | 0.896 | 0.907 | 20.345 | |
RF+SC (未初筛) | 0.833 | 0.707 | 46.124 | 0.868 | 0.869 | 22.041 | |
SVM+SC | 0.816 | 0.802 | 28.446 | 0.827 | 0.808 | 29.383 | |
KNN+SC | 0.721 | 0.759 | 31.306 | 0.754 | 0.759 | 32.907 | |
DT+SC | 0.891 | 0.929 | 16.946 | 0.808 | 0.834 | 27.297 | |
ANN+SC | 0.816 | 0.819 | 25.225 | 0.880 | 0.823 | 28.207 |
VSA | PSA | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
MOF ID | SCH4/H2 | ΔNCH4/(mol•kg–1) | APS/(mol•kg–1) | R% | MOF ID | SCH4/H2 | ΔNCH4/(mol•kg–1) | APS/(mol•kg–1) | R% | |
hMOF-5073958 | 194.7 | 3.49 | 679.3 | 81.87 | hMOF-5074069 | 47.5 | 6.65 | 315.8 | 80.25 | |
hMOF-5079271 | 187.0 | 3.60 | 673.9 | 82.45 | hMOF-27591 | 43.8 | 6.96 | 305.0 | 80.85 | |
hMOF-36375 | 203.0 | 3.28 | 666.6 | 82.06 | hMOF-27683 | 40.9 | 7.38 | 301.5 | 82.05 | |
hMOF-5055186 | 172.2 | 3.80 | 654.3 | 81.62 | hMOF-5056488 | 40.9 | 7.23 | 295.7 | 81.01 | |
hMOF-26377 | 210.8 | 3.07 | 647.7 | 80.25 | hMOF-5071338 | 44.0 | 6.69 | 294.9 | 80.58 | |
hMOF-5073994 | 197.4 | 3.23 | 637.8 | 82.59 | hMOF-5046827 | 44.6 | 6.60 | 294.1 | 81.11 | |
hMOF-25357 | 214.9 | 2.94 | 630.8 | 82.00 | hMOF-29743 | 40.3 | 7.09 | 285.5 | 82.45 | |
hMOF-5056768 | 164.9 | 3.71 | 611.0 | 81.51 | hMOF-5071184 | 46.7 | 6.00 | 280.3 | 80.11 | |
hMOF-5081782 | 179.1 | 3.37 | 604.6 | 83.54 | hMOF-32836 | 36.1 | 7.61 | 274.9 | 83.83 | |
hMOF-26209 | 212.0 | 2.83 | 599.8 | 81.82 | hMOF-29330 | 42.6 | 6.31 | 268.4 | 80.01 |
VSA | PSA | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
MOF ID | SCH4/H2 | ΔNCH4/(mol•kg–1) | APS/(mol•kg–1) | R% | MOF ID | SCH4/H2 | ΔNCH4/(mol•kg–1) | APS/(mol•kg–1) | R% | |
hMOF-5073958 | 194.7 | 3.49 | 679.3 | 81.87 | hMOF-5074069 | 47.5 | 6.65 | 315.8 | 80.25 | |
hMOF-5079271 | 187.0 | 3.60 | 673.9 | 82.45 | hMOF-27591 | 43.8 | 6.96 | 305.0 | 80.85 | |
hMOF-36375 | 203.0 | 3.28 | 666.6 | 82.06 | hMOF-27683 | 40.9 | 7.38 | 301.5 | 82.05 | |
hMOF-5055186 | 172.2 | 3.80 | 654.3 | 81.62 | hMOF-5056488 | 40.9 | 7.23 | 295.7 | 81.01 | |
hMOF-26377 | 210.8 | 3.07 | 647.7 | 80.25 | hMOF-5071338 | 44.0 | 6.69 | 294.9 | 80.58 | |
hMOF-5073994 | 197.4 | 3.23 | 637.8 | 82.59 | hMOF-5046827 | 44.6 | 6.60 | 294.1 | 81.11 | |
hMOF-25357 | 214.9 | 2.94 | 630.8 | 82.00 | hMOF-29743 | 40.3 | 7.09 | 285.5 | 82.45 | |
hMOF-5056768 | 164.9 | 3.71 | 611.0 | 81.51 | hMOF-5071184 | 46.7 | 6.00 | 280.3 | 80.11 | |
hMOF-5081782 | 179.1 | 3.37 | 604.6 | 83.54 | hMOF-32836 | 36.1 | 7.61 | 274.9 | 83.83 | |
hMOF-26209 | 212.0 | 2.83 | 599.8 | 81.82 | hMOF-29330 | 42.6 | 6.31 | 268.4 | 80.01 |
[1] |
Chen, W. D. China Petrochem. Ind. Obser. 2021, 8, 60. (in Chinese)
|
(陈卫东, 中国石油和化工产业观察, 2021, 8, 60.)
|
|
[2] |
Cao, F.; Chen, K. Y.; Guo, T. T.; Jin, X. L.; Wang, H. G.; Zhang, L. Distributed Energy 2020, 5, 1. (in Chinese)
|
(曹蕃, 陈坤洋, 郭婷婷, 金绪良, 王海刚, 张丽, 分布式能源, 2020, 5, 1.)
|
|
[3] |
Malek, A.; Farooq, S. AIChE J. 1998, 44, 1985.
doi: 10.1002/aic.690440906 |
[4] |
Herm, Z. R.; Krishna, R.; Long, J. Microporous Mesoporous Mater. 2012, 151, 481.
doi: 10.1016/j.micromeso.2011.09.004 |
[5] |
Ludwig, K. Development of New Pressure Swing Adsorption (PSA) Technology to Recover High Valued Products from Chemical Plant and Refinery Waste Systems, Report to DOE, DE-FC36-00CH11022, Pennsylvania, Air Products and Chemicals Inc., 2004.
|
[6] |
Krishna, R.; Baten, J. Phys. Chem. Chem. Phys. 2011, 13, 10593.
doi: 10.1039/c1cp20282k |
[7] |
Basdogan, Y.; Sezginel, K. B.; Keskin, S. Ind. Eng. Chem. Res. 2015, 54, 8479.
doi: 10.1021/acs.iecr.5b01901 |
[8] |
Yang, Q.; Zhong, C. J. Phys. Chem. B 2006, 110, 17776.
doi: 10.1021/jp062723w |
[9] |
Liu, B.; Yang, Q.; Xue, C.; Zhong, C.; Chen, B.; Smit, B. J. Phys. Chem. C 2008, 112, 9854.
doi: 10.1021/jp802343n |
[10] |
Bei, L.; Sun, C.; Chen, G. Chem. Eng. Sci. 2011, 66, 3012.
doi: 10.1016/j.ces.2011.04.004 |
[11] |
Huang, A.; Bux, H.; Steinbach, F.; Caro, J. Angew. Chem., nt. Ed. 2010, 122, 5078.
|
[12] |
Huang, A.; Dou, W.; Caro, J. J. Am. Chem. Soc. 2010, 132, 15562.
doi: 10.1021/ja108774v |
[13] |
Li, Y.; Liang, F.; Bux, H.; Yang, W.; Caro, J. J. Membr. Sci. 2010, 354, 48.
doi: 10.1016/j.memsci.2010.02.074 |
[14] |
Li, Y.-S.; Liang, F.-Y.; Bux, H.; Feldhoff, A.; Yang, W.-S.; Caro, J. Angew. Chem., Int. Ed. 2010, 122, 558.
|
[15] |
Bux, H.; Liang, F.; Li, Y.; Cravillon, J.; Wiebcke, M.; Caro, J. J. Am. Chem. Soc. 2009, 131, 16000.
doi: 10.1021/ja907359t |
[16] |
Wu, X. J.; Yang, X.; Song, J.; Cai, W. Q. Acta Chim. Sinica 2012, 70, 2518. (in Chinese)
doi: 10.6023/A12110858 |
(吴选军, 杨旭, 宋杰, 蔡卫权, 化学学报, 2012, 70, 2518.)
doi: 10.6023/A12110858 |
|
[17] |
Moghadam, P. Z.; Li, A.; Wiggin, S. B.; Tao, A.; Fairen-Jimenez, D. Chem. Mater. 2017, 29, 2618.
doi: 10.1021/acs.chemmater.7b00441 |
[18] |
Wilmer, C. E.; Leaf, M.; Lee, C. Y.; Farha, O. K.; Hauser, B. G.; Hupp, J. T.; Snurr, R. Q. Nat. Chem. 2012, 4, 83.
doi: 10.1038/nchem.1192 |
[19] |
Gómez-Gualdrón, D. A.; Colón, Y. J.; Zhang, X.; Wang, T. C.; Chen, Y. S.; Hupp, J. T.; Yildirim, T.; Farha, O. K.; Zhang, J.; Snurr, R. Q. Energy Environ. Sci. 2016, 9, 3279.
doi: 10.1039/C6EE02104B |
[20] |
Moosavi, S. M.; Boyd, P. G.; Sarkisov, L.; Smit, B. ACS Cent. Sci. 2018, 4, 832.
doi: 10.1021/acscentsci.8b00157 |
[21] |
Li, S.; Chung, Y. G.; Simon, C. M.; Snurr, R. Q. J. Phys. Chem. Lett. 2017, 8, 6135.
doi: 10.1021/acs.jpclett.7b02700 |
[22] |
Zhang, H.; Yang, L. M.; Ganz, E. ACS Appl. Mater. Interfaces 2020, 12, 18533.
doi: 10.1021/acsami.0c01927 |
[23] |
Zhang, H.; Yang, L. M.; Ganz, E. ACS Sustainable Chem. Eng. 2020, 8, 14616.
doi: 10.1021/acssuschemeng.0c05951 |
[24] |
Zhang, H.; Shang, C.; Yang, L. M.; Ganz, E. Inorg. Chem. 2020, 59, 16665.
doi: 10.1021/acs.inorgchem.0c02654 pmid: 33124798 |
[25] |
Zhang, H.; Yang, L. M.; Pan, H.; Ganz, E. Cryst. Growth Des. 2020, 20, 6337.
doi: 10.1021/acs.cgd.0c00269 |
[26] |
Yang, L.; Wu, Y. J.; Wu, X. J.; Cai, W. Acta Chim. Sinica 2021, 79, 520. (in Chinese)
doi: 10.6023/A20110526 |
(杨磊, 吴宇静, 吴选军, 蔡卫权, 化学学报, 2021, 79, 520.)
doi: 10.6023/A20110526 |
|
[27] |
Bian, L.; Li, W.; Wei, Z. Z.; Liu, X. W.; Li, S. Acta Chim. Sinica 2018, 76, 303. (in Chinese)
doi: 10.6023/A18010026 |
(卞磊, 李炜, 魏振振, 刘晓威, 李松, 化学学报, 2018, 76, 303.)
doi: 10.6023/A18010026 |
|
[28] |
Yang, W. Y.; Liang, H.; Qiao, Z. W. Acta Chim. Sinica 2018, 76, 785. (in Chinese)
doi: 10.6023/A18070293 |
(杨文远, 梁红, 乔智威, 化学学报, 2018, 76, 785.)
doi: 10.6023/A18070293 |
|
[29] |
Wu, D.; Wang, C.; Liu, B.; Liu, D.; Yang, Q.; Zhong, C. AIChE J. 2012, 58, 2078.
doi: 10.1002/aic.12744 |
[30] |
Altintas, C.; Erucar, I.; Keskin, S. ACS Appl. Mater. Interfaces 2018, 10, 3668.
doi: 10.1021/acsami.7b18037 |
[31] |
Chiau Junior, M. J.; Wang, Y.; Wu, X.; Cai, W. Q. Int. J. Hydrogen Energy 2020, 45, 27320.
doi: 10.1016/j.ijhydene.2020.07.041 |
[32] |
Guo, F. Y.; Liu, Y.; Hu, J.; Liu, H. L.; Hu, Y. Chem. Eng. Sci. 2016, 149, 14.
doi: 10.1016/j.ces.2016.04.027 |
[33] |
Liu, Z. L.; Li, W.; Liu, H.; Zhuang, X. D.; Li, S. Acta Chim. Sinica 2019, 77, 323. (in Chinese)
doi: 10.6023/A18120497 |
(刘治鲁, 李炜, 刘昊, 庄旭东, 李松, 化学学报, 2019, 77, 323.)
doi: 10.6023/A18120497 |
|
[34] |
Liang, H.; Jiang, K.; Yan, T. A.; Chen, G. H. ACS Omega 2021, 6, 9066.
doi: 10.1021/acsomega.1c00100 pmid: 33842776 |
[35] |
Liang, H.; Yang, W. Y.; Peng, F.; Liu, Z. L.; Liu, J.; Qiao, Z. W. APL Mater. 2019, 7, 091101.
doi: 10.1063/1.5100765 |
[36] |
Qiao, Z. W.; Xu, Q. S.; Jiang, J. W. J. Mater. Chem. A 2018, 6, 18898.
doi: 10.1039/C8TA04939D |
[37] |
Chung, Y. G.; Gomez-Gualdron, D. A.; Li, P.; Leperi, K. T.; Deria, P.; Zhang, H.; Vermeulen, N. A.; Stoddart, J. F.; You, F.; Hupp, J. T.; Farha, O. K.; Snurr, R. Q. Sci. Adv. 2016, 2, e1600909.
|
[38] |
Tang, H. J.; Xu, Q. S.; Wang, M.; Jiang, J. W. ACS Appl. Mater. Interfaces 2021, 13, 53454.
doi: 10.1021/acsami.1c13786 |
[39] |
Cai, C. Z.; Li, L. F.; Deng, X. M.; Li, S. H.; Liang, H.; Qiao, Z. W. Acta Chim. Sinica 2020, 78, 427. (in Chinese)
doi: 10.6023/A20030065 |
(蔡铖智, 李丽凤, 邓小梅, 李树华, 梁红, 乔智威, 化学学报, 2020, 78, 427.)
doi: 10.6023/A20030065 |
|
[40] |
Moghadam, P. Z.; Rogge, S. M. J.; Li, A.; Chow, C. M.; Wieme, J.; Moharrami, N.; Aragones-Anglada, M.; Conduit, G.; Gomez-Gualdron, D. A.; Van Speybroeck, V.; Fairen-Jimenez, D. Matter 2019, 1, 219.
doi: 10.1016/j.matt.2019.03.002 |
[41] |
Long, R.; Xia, X. X.; Zhao, Y. A.; Li, S.; Liu, Z. C.; Liu, W. iScience 2021, 24, 101914.
doi: 10.1016/j.isci.2020.101914 |
[42] |
Batra, R.; Chen, C.; Evans, T. G.; Walton, K. S.; Ramprasad, R. Nat. Mach. Intell. 2020, 2, 704.
doi: 10.1038/s42256-020-00249-z |
[43] |
Tong, M.; Lan, Y. S.; Yang, Q. Y.; Zhong, C. L. Green Energy Environ. 2018, 3, 107.
doi: 10.1016/j.gee.2017.09.004 |
[44] |
Sheridan, R. P. Proc. Natl. Acad. Sci. U. S. A. 1989, 86, 8165.
|
[45] |
Cramer, R. D.; Poss, M. A.; Hermsmeier, M. A.; Caulfield, T. J.; Kowala, M. C.; Valentine, M. T. J. Med. Chem. 1999, 42, 3919.
pmid: 10508440 |
[46] |
Willems, T. F.; Rycroft, C. H.; Kazi, M.; Meza, J. C.; Haranczyk, M. Microporous Mesoporous Mater. 2012, 149, 134.
doi: 10.1016/j.micromeso.2011.08.020 |
[47] |
Dubbeldam, D.; Calero, S.; Ellis, D. E.; Snurr, R. Q. Mol. Simul. 2015, 42, 81.
doi: 10.1080/08927022.2015.1010082 |
[48] |
Halder, P.; Singh, J. K. Energy Fuels 2020, 34, 14591.
doi: 10.1021/acs.energyfuels.0c03063 |
[49] |
Wu, Y.; Duan, H.; Xi, H. Chem. Mater. 2020, 32, 2986.
doi: 10.1021/acs.chemmater.9b05322 |
[50] |
Rappe, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W.; Skiff, W. J. Am. Chem. Soc. 1992, 114, 10024.
doi: 10.1021/ja00051a040 |
[51] |
Buch, V. J. Chem. Phys. 1994, 100, 7610.
|
[52] |
Martin, M. G.; Siepmann, J. I. J. Phys. Chem. B 1998, 102, 2569.
doi: 10.1021/jp972543+ |
[53] |
Abascal, J. L. F.; Vega, C. J. Chem. Phys. 2005, 123, 234505.
doi: 10.1063/1.2121687 |
[54] |
Rappe, A. K.; Goddard, W. A. J. Chem. Phys. 1991, 95, 3358.
doi: 10.1021/j100161a070 |
[55] |
Simon, C. M.; Mercado, R.; Schnell, S. K.; Smit, B.; Haranczyk, M. Chem. Mater. 2015, 27, 4459.
doi: 10.1021/acs.chemmater.5b01475 |
[56] |
Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; Vanderplas, J.; Passos, A.; Cournapeau, D.; Brucher, M.; Perrot, M.; Duchesnay, É. J. Mach. Learn. Res. 2011, 12, 2825.
|
[57] |
Archer, K. J.; Kimes, R. V. Comput. Stat. Data An. 2008, 52, 2249.
doi: 10.1016/j.csda.2007.08.015 |
[58] |
Lundberg, S.; Lee, S. I. In Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS'17), Ed.: Hook, R., Curran Associates Inc., New York, 2017,p. 4768.
|
[59] |
Tong, M. M.; Yang, Q. Y.; Zhong, C. L. Microporous Mesoporous Mater. 2015, 210, 142.
doi: 10.1016/j.micromeso.2015.02.034 |
[60] |
Ma, R. M.; Colón, Y. J.; Luo, T. F. ACS Appl. Mater. Interfaces 2020, 12, 34041.
doi: 10.1021/acsami.0c06858 |
[61] |
Fanourgakis, G. S.; Gkagkas, K.; Tylianakis, E.; Froudakis, G. E. J. Am. Chem. Soc. 2020, 142, 3814.
doi: 10.1021/jacs.9b11084 pmid: 32017547 |
[62] |
Fernandez, M.; Woo, T. K.; Wilmer, C. E.; Snurr, R. Q. J. Phys. Chem. C 2013, 117, 7681.
doi: 10.1021/jp4006422 |
[63] |
Gülsoy, Z.; Sezginel, K. B.; Uzun, A.; Keskin, S.; Yıldırım, R. ACS Comb. Sci. 2019, 21, 257.
doi: 10.1021/acscombsci.8b00150 |
[64] |
Hu, J. H.; Zhao, J. F.; Yan, T. Y. J. Phys. Chem. C 2015, 119, 2010.
doi: 10.1021/jp512908k |
[1] | Bo Sun, Wenwen Ju, Tao Wang, Xiaojun Sun, Ting Zhao, Xiaomei Lu, Feng Lu, Quli Fan. Preparation of Highly-dispersed Conjugated Polymer-Metal Organic Framework Nanocubes for Antitumor Application [J]. Acta Chimica Sinica, 2023, 81(7): 757-762. |
[2] | Xingyi Qi, Yaofeng Hu, Ruoyu Wang, Yaqing Yang, Yufei Zhao. Recent Advance of Machine Learning in Selecting New Materials [J]. Acta Chimica Sinica, 2023, 81(2): 158-174. |
[3] | Junchang Chen, Mingxing Zhang, Shuao Wang. Research Progress of Synthesis Methods for Crystalline Porous Materials [J]. Acta Chimica Sinica, 2023, 81(2): 146-157. |
[4] | Yizhi Han, Jianhui Lan, Xue Liu, Weiqun Shi. Advances in Molecular Dynamics Studies of Molten Salts Based on Machine Learning [J]. Acta Chimica Sinica, 2023, 81(11): 1663-1672. |
[5] | Xiaojuan Li, Ziyu Ye, Shuhan Xie, Yongjing Wang, Yonghao Wang, Yuancai Lv, Chunxiang Lin. Study on Performance and Mechanism of Phenol Degradation through Peroxymonosulfate Activation by Nitrogen/Chlorine Co-doped Porous Carbon Materials [J]. Acta Chimica Sinica, 2022, 80(9): 1238-1249. |
[6] | Min Cheng, Shihui Wang, Lei Luo, Li Zhou, Kexin Bi, Yiyang Dai, Xu Ji. Large-Scale Computational Screening of Metal-Organic Framework Membranes for Ethane/Ethylene Separation [J]. Acta Chimica Sinica, 2022, 80(9): 1277-1288. |
[7] | Xu Yan, Hemi Qu, Ye Chang, Xuexin Duan. Application of Metal-Organic Frameworks in Gas Pre-concentration, Pre-separation and Detection [J]. Acta Chimica Sinica, 2022, 80(8): 1183-1202. |
[8] | Fang Liu, Tingting Pan, Xiurong Ren, Weiren Bao, Jiancheng Wang, Jiangliang Hu. Research on Preparation and Benzene Adsorption Performance of HCDs@MIL-100(Fe) Adsorbents [J]. Acta Chimica Sinica, 2022, 80(7): 879-887. |
[9] | Linan Cao, Min Wei. Recent Progress of Electric Conductive Metal-Organic Frameworks Thin Film [J]. Acta Chimica Sinica, 2022, 80(7): 1042-1056. |
[10] | Yuze Liu, Kunhua Li, Jiaxing Huang, Xi Yu, Wenping Hu. Accurate Prediction of the Boiling Point of Organic Molecules by Multi-Component Heterogeneous Learning Model [J]. Acta Chimica Sinica, 2022, 80(6): 714-723. |
[11] | Rong Zhang, Jiangping Liu, Ziyi Zhu, Shumei Chen, Fei Wang, Jian Zhang. Synthesis, Structure and Characterization of Two Ferrocene Functionalized Cadmium Metal Organic Frameworks※ [J]. Acta Chimica Sinica, 2022, 80(3): 249-254. |
[12] | Xusheng Wang, Xu Yang, Chunhui Chen, Hongfang Li, Yuanbiao Huang, Rong Cao. Graphene Quantum Dots Supported on Fe-based Metal-Organic Frameworks for Efficient Photocatalytic CO2 Reduction※ [J]. Acta Chimica Sinica, 2022, 80(1): 22-28. |
[13] | Lei Yang, Yujing Wu, Xuanjun Wu, Weiquan Cai. High-throughput Screening of Real Metal-organic Frameworks for Adsorption Separation of C4 Olefins [J]. Acta Chimica Sinica, 2021, 79(4): 520-529. |
[14] | Yan-Wu Zhao, Xing Li, Fu-Qiang Zhang, Xiang Zhang. Precise Control of the Dimension of Homochiral Metal-Organic Frameworks (MOFs) and Their Luminescence Properties [J]. Acta Chimica Sinica, 2021, 79(11): 1409-1414. |
[15] | Huan Liu, Li Li, Ping Li, Guangzhi Zhang, Xun Xu, Hao Zhang, Lingfang Qiu, Hui Qi, Shuwang Duo. In-situ Construction of 2D/3D ZnIn2S4/TiO2 with Enhanced Photocatalytic Performance [J]. Acta Chimica Sinica, 2021, 79(10): 1293-1301. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||