Chinese Journal of Organic Chemistry ›› 2021, Vol. 41 ›› Issue (6): 2249-2260.DOI: 10.6023/cjoc202012008 Previous Articles Next Articles
REVIEWS
收稿日期:
2020-12-04
修回日期:
2021-01-21
发布日期:
2021-02-22
通讯作者:
于丽芳
基金资助:
Runqiu Lü, Wei Zhang, Lifang Yu()
Received:
2020-12-04
Revised:
2021-01-21
Published:
2021-02-22
Contact:
Lifang Yu
Supported by:
Share
Runqiu Lü, Wei Zhang, Lifang Yu. Recent Advances in Antitubercular Compounds Targeting Mycolic Acid Biosynthesis and Transport[J]. Chinese Journal of Organic Chemistry, 2021, 41(6): 2249-2260.
CYP450 3A4 IC50 | >50.1 µmol/L |
---|---|
HepG2 Cytotoxicity IC50 | >50 µmol/L |
Ames test | Negative |
Cardiovascular profile Qpatch IC50 | >50 µmol/L |
Cli human (in vitro) | 0.2 mL•min–1•g–1 |
Vss (4 mg/kg iv)a | 2.58 L/kg |
t1/2 (4 mg/kg iv) | 0.94 h |
Tmax (100 mg/kg po) | 0.42 h |
DNAUC (in vivo)b | 935.8 (ng•h)/mL per mg/kg |
CYP450 3A4 IC50 | >50.1 µmol/L |
---|---|
HepG2 Cytotoxicity IC50 | >50 µmol/L |
Ames test | Negative |
Cardiovascular profile Qpatch IC50 | >50 µmol/L |
Cli human (in vitro) | 0.2 mL•min–1•g–1 |
Vss (4 mg/kg iv)a | 2.58 L/kg |
t1/2 (4 mg/kg iv) | 0.94 h |
Tmax (100 mg/kg po) | 0.42 h |
DNAUC (in vivo)b | 935.8 (ng•h)/mL per mg/kg |
Plasma protein binding | Mouse 73% Human 72% |
---|---|
CYP inhibition | No significant inhibition |
cmax in plasma (10 mg/kg po) | 444 ng/mL |
Tmax (10 mg/kg po) | 0.5 h |
AUC0-24 (10 mg/kg po) | 74940 ng•min/mL |
AUC0-24 (3 mg/kg iv) | 79369 ng•min/mL |
Vss (3 mg/kg iv)a | 4.2 L/kg |
Oral bioavailability (F) | 28% |
Plasma protein binding | Mouse 73% Human 72% |
---|---|
CYP inhibition | No significant inhibition |
cmax in plasma (10 mg/kg po) | 444 ng/mL |
Tmax (10 mg/kg po) | 0.5 h |
AUC0-24 (10 mg/kg po) | 74940 ng•min/mL |
AUC0-24 (3 mg/kg iv) | 79369 ng•min/mL |
Vss (3 mg/kg iv)a | 4.2 L/kg |
Oral bioavailability (F) | 28% |
Compound | MICH37Rv | AA change | Location |
---|---|---|---|
AU1235 | 0.01 µg/mL | G253E | TMHa X |
BM212/BM635 | 0.12 / 0.3 µmol/L | L215S | TMH IX |
indole carboxamides | 0.012 µmol/L | S288T | TMH XI |
HC2091 | 19.3 µmol/L b | V643, F644 | TMH IV |
Spiro | 0.06 µmol/L | F255L, Y252C | TMH X |
TBL-140 | 2.5 µmol/L b | L189R, L567P, V643M, F644L | TMH VIII, II, IV |
THPP | 0.15 µmol/L | A249P, A677V | TMH X, V |
SQ109 | 0.78~1.56 µmol/L | A700T, Q40R, L567P | TMH V, VII; 周质区 |
Compound | MICH37Rv | AA change | Location |
---|---|---|---|
AU1235 | 0.01 µg/mL | G253E | TMHa X |
BM212/BM635 | 0.12 / 0.3 µmol/L | L215S | TMH IX |
indole carboxamides | 0.012 µmol/L | S288T | TMH XI |
HC2091 | 19.3 µmol/L b | V643, F644 | TMH IV |
Spiro | 0.06 µmol/L | F255L, Y252C | TMH X |
TBL-140 | 2.5 µmol/L b | L189R, L567P, V643M, F644L | TMH VIII, II, IV |
THPP | 0.15 µmol/L | A249P, A677V | TMH X, V |
SQ109 | 0.78~1.56 µmol/L | A700T, Q40R, L567P | TMH V, VII; 周质区 |
Vero cells IC50 | ≥192 µmol/L |
---|---|
Remaining (T=120 min) | 52% |
CYP inhibition (% inhibition) CYP2C9 | –5.2 |
CYP inhibition (% inhibition) CYP2D6 | 36.6 |
CYP inhibition (% inhibition) CY3A4 | –6.7 |
hERG IC50 | >30 µmol/L |
Tmax (100 mg/kg po) | Plasma 4 h |
Lung 4 h | |
cmax (100 mg/kg po) | Plasma 1.71 µg/unit a |
Lung 3.50 µg/unit |
Vero cells IC50 | ≥192 µmol/L |
---|---|
Remaining (T=120 min) | 52% |
CYP inhibition (% inhibition) CYP2C9 | –5.2 |
CYP inhibition (% inhibition) CYP2D6 | 36.6 |
CYP inhibition (% inhibition) CY3A4 | –6.7 |
hERG IC50 | >30 µmol/L |
Tmax (100 mg/kg po) | Plasma 4 h |
Lung 4 h | |
cmax (100 mg/kg po) | Plasma 1.71 µg/unit a |
Lung 3.50 µg/unit |
ADMET properties | NITD-304 | NITD-349 |
---|---|---|
t1/2 (25 mg/kg po in mice) | 233 min | 11 min |
Cytotoxicity HepG2 CC50 | >20 µmol/L | >20 µmol/L |
Cytotoxicity THP-1 CC50 | >20 µmol/L | >20 µmol/L |
hERG IC50 | >30 µmol/L | >30 µmol/L |
Cardiovascular Profile QPatch IC50 | >30 µmol/L | NAa |
Ames test | Negative | Negative |
CYP450 inhibition 3A4 IC50 | >20 µmol/L | >20 µmol/L |
CYP450 inhibition 2D6 IC50 | >20 µmol/L | >20 µmol/L |
CYP450 inhibition 2C9 IC50 | >20 µmol/L | 2.67 µmol/L |
cmax (25 mg/kg po in mice) | 3.51 µmol/L | 4.21 µmol/L |
ADMET properties | NITD-304 | NITD-349 |
---|---|---|
t1/2 (25 mg/kg po in mice) | 233 min | 11 min |
Cytotoxicity HepG2 CC50 | >20 µmol/L | >20 µmol/L |
Cytotoxicity THP-1 CC50 | >20 µmol/L | >20 µmol/L |
hERG IC50 | >30 µmol/L | >30 µmol/L |
Cardiovascular Profile QPatch IC50 | >30 µmol/L | NAa |
Ames test | Negative | Negative |
CYP450 inhibition 3A4 IC50 | >20 µmol/L | >20 µmol/L |
CYP450 inhibition 2D6 IC50 | >20 µmol/L | >20 µmol/L |
CYP450 inhibition 2C9 IC50 | >20 µmol/L | 2.67 µmol/L |
cmax (25 mg/kg po in mice) | 3.51 µmol/L | 4.21 µmol/L |
靶点 | 代表性小分子化合物 | 结构类别 | 发展阶段 |
---|---|---|---|
KasA | DG167, JSF-3285 | 吲唑磺酰胺类 | Lead Optimization |
InhA | GSK693 | 噻二唑类 | Lead Optimization |
NITD916 | 4-羟基-2-吡啶酮类 | Hit-to-Lead | |
PT03 | 二芳基醚类 | Hit-to-Lead | |
HadABC | NAS21 | 1,3-二酮类 | Hit-to-Lead |
FadD32 | 喹啉-2-酰胺 | 喹啉类 | Hit-to-Lead |
Pks13 | TP4 | 噻吩类 | Hit-to-Lead |
TAM16, Coumestan48 | 苯并呋喃类 | Lead Optimization | |
MmpL3 | SQ109 | 乙二胺类 | Phase Ⅱb~Ⅲ |
NITD-304, NITD-349 | 吲哚酰胺类 | Pre-Clinical | |
AU1235 | 金刚烷脲类 | Hit-to-Lead | |
BM212/BM635 | 吡咯和吡唑类 | Hit-to-Lead | |
THPP | 四氢吡唑并[1,5-a]嘧啶类 | Hit-to-Lead | |
Spiro | 哌啶螺环类 | Hit-to-Lead | |
PIPD1 | 羟基哌啶类 | Hit-to-Lead | |
Ag85 | I3-AG85 | 噻吩类 | Hit-to-Lead |
未知靶点 | 德拉马尼 | 亚硝基咪唑类 | EMA上市 |
靶点 | 代表性小分子化合物 | 结构类别 | 发展阶段 |
---|---|---|---|
KasA | DG167, JSF-3285 | 吲唑磺酰胺类 | Lead Optimization |
InhA | GSK693 | 噻二唑类 | Lead Optimization |
NITD916 | 4-羟基-2-吡啶酮类 | Hit-to-Lead | |
PT03 | 二芳基醚类 | Hit-to-Lead | |
HadABC | NAS21 | 1,3-二酮类 | Hit-to-Lead |
FadD32 | 喹啉-2-酰胺 | 喹啉类 | Hit-to-Lead |
Pks13 | TP4 | 噻吩类 | Hit-to-Lead |
TAM16, Coumestan48 | 苯并呋喃类 | Lead Optimization | |
MmpL3 | SQ109 | 乙二胺类 | Phase Ⅱb~Ⅲ |
NITD-304, NITD-349 | 吲哚酰胺类 | Pre-Clinical | |
AU1235 | 金刚烷脲类 | Hit-to-Lead | |
BM212/BM635 | 吡咯和吡唑类 | Hit-to-Lead | |
THPP | 四氢吡唑并[1,5-a]嘧啶类 | Hit-to-Lead | |
Spiro | 哌啶螺环类 | Hit-to-Lead | |
PIPD1 | 羟基哌啶类 | Hit-to-Lead | |
Ag85 | I3-AG85 | 噻吩类 | Hit-to-Lead |
未知靶点 | 德拉马尼 | 亚硝基咪唑类 | EMA上市 |
[1] |
WHO Global Tuberculosis Report 2020, World Health Organization , 2020. https://www.who.int/tb/publications/global_report/zh/.
|
[2] |
Zumla, A. I.; Gillespie, S. H.; Hoelscher, M.; Philips, P. P.; Cole, S. T.; Abubakar, I.; McHugh, T. D.; Schito, M.; Maeurer, M.; Nunn, A. J. Lancet Infect. Dis. 2014, 14,327.
doi: 10.1016/S1473-3099(13)70328-1 |
[3] |
Ivanyi, J. Tuberc. Pathog. Prot. Control 1994,437.
|
[4] |
Sun, P.; Mei, J. Chin. J. Antituberc. 2010, 43,44(in Chinese).
|
( 孙丕, 梅建, 中国防痨杂志, 2010, 43,44.)
|
|
[5] |
Jackson, M.; Stadthagen, G.; Gicquel, B. Tuberculosis 2007, 87,78.
pmid: 17030019 |
[6] |
Yuan, Y.; Lee, R. E.; Besra, G. S.; Belisle, J. T.; Barry III, C. E. Proc. Natl. Acad. Sci. U. S. A. 1995, 92,6630.
pmid: 7604045 |
[7] |
North, E. J.; Jackson, M.; Lee, R. E. Curr. Pharm. Design 2014, 20,4357.
doi: 10.2174/1381612819666131118203641 |
[8] |
Cole, S. T.; Brosch, R.; Parkhill, J.; Garnier, T.; Churcher, C.; Harris, D.; Gordon, S. V.; Eiglmeier, K.; Gas, S.; Barry, C. E.; Tekaia, F.; Badcock, K.; Basham, D.; Brown, D.; Chillingworth, T.; Connor, R.; Davies, R.; Devlin, K.; Feltwell, T.; Gentles, S.; Hamlin, N.; Holroyd, S.; Hornsby, T.; Jagels, K.; Krogh, A.; McLean, J.; Moule, S.; Murphy, L.; Oliver, K.; Osborne, J.; Quail, M. A.; Rajandream, M. A.; Rogers, J.; Rutter, S.; Seeger, K.; Skelton, J.; Squares, R.; Squares, S.; Sulston, J. E.; Taylor, K.; Whitehead, S.; Barrell, B. G. Nature 1998, 393,537.
pmid: 9634230 |
[9] |
Daffé, M.; Draper, P. Adv. Microb. Physiol. 1998, 39,131.
pmid: 9328647 |
[10] |
Marrakchi, H.; Lanéelle, M. A.; Daffé, M. Chem. Biol. 2014, 21,67.
doi: 10.1016/j.chembiol.2013.11.011 |
[11] |
Takayama, K; Wang, C; Besra, G. S. Clin. Microbiol. Rev. 2005, 18,81.
pmid: 15653820 |
[12] |
Kremer, L.; Nampoothiri, K. M.; Lesjean, S.; Dover, L. G.; Graham, S.; Betts, J.; Brennan, P. J.; Minnikin, D. E.; Locht, C.; Besra, G. S. J. Biol. Chem. 2001, 276,27967.
pmid: 11373295 |
[13] |
Choi, K. H.; Kremer, L.; Besra, G. S.; Rock, C. O. J. Biol. Chem. 2000, 275,28201.
pmid: 10840036 |
[14] |
Kremer, L.; Dover, L. G.; Carrère, S.; Nampoothiri, K. M.; Lesjean, S.; Brown, A. K.; Brennan, P. J.; Minnikin, D. E.; Locht, C.; Besra, G. S. Biochem. J. 2002, 364,423.
doi: 10.1042/bj20011628 |
[15] |
Marrakchi, H.; Ducasse, S.; Labesse, G.; Montrozier, H.; Margeat, E.; Emorine, L.; Charpentier, X.; Daffé, M.; Quemard, A. Microbiology 2002, 148,951.
doi: 10.1099/00221287-148-4-951 |
[16] |
Banerjee, A, Dubnau, E, Quemard, A, Balasubramanian, V.; Um, K. S.; Wilson, T.; Collins, D.; Lisle, G. D.; Jacobs, W. R. Jr. Science 1994,263 227.
|
[17] |
Odriozola, J. M.; Ramos, J. A.; Bloch, K. Biochim. Biophys. Acta, Lipids Lipid Metab. 1977, 488,207.
doi: 10.1016/0005-2760(77)90178-3 |
[18] |
Trivedi, O.A; Arora, P.; Sridharan, V.; Tickoo, R.; Mohanty, D.; Gokhale, R. S. Nature 2004, 428,441.
pmid: 15042094 |
[19] |
Bhatt, A.; Brown, A. K.; Singh, A.; Minnikin, D. E.; Besra, G. S. Chem. Biol. 2008, 15,930.
doi: 10.1016/j.chembiol.2008.07.007 |
[20] |
Lea-Smith, D.J; Pyke, J.S; Tull, D; McConville, M. J., Coppel, R. L.; Crellin, P. K. J. Biol. Chem. 2007, 282,11000.
pmid: 17308303 |
[21] |
Grzegorzewicz, A. E.; Pham, H.; Gundi, V. A. K. B.; Scherman, M. S.; North, E. J.; Hess, T.; Jones, V.; Gruppo, V.; Born, S. E. M.; Kordulakova, J.; Chavadi, S. S.; Morisseau, C.; Lenaerts, A. J.; Lee, R. E.; McNeil, M. R.; Jackson, M. Nat. Chem. Biol. 2012, 8,334.
doi: 10.1038/nchembio.794 pmid: 22344175 |
[22] |
Jackson, M.; Raynaud, C.; Laneelle, M. A.; Guilhot, C.; Laurent-Winter, C.; Ensergueix, D.; Gicquel, B.; Daffe, M. Mol. Microbiol. 1999, 31,1573.
pmid: 10200974 |
[23] |
Kalscheuer, R.; Weinrick, B.; Veeraraghavan, U.; Besra, G. S.; Jacobs, W. R. Jr. Proc. Natl. Acad. Sci. U. S. A. 2010, 107,21761.
|
[24] |
Ramaswamy, S. V.; Reich, R.; Dou, S. J.; Jasperse, L.; Pan, X.; Wanger, A.; Quitugua, T.; Graviss, E. A. Antimicrob. Agents Chemother. 2003, 47,1241.
doi: 10.1128/AAC.47.4.1241-1250.2003 |
[25] |
DeBarber, A. E.; Mdluli, K.; Bosman, M.; Bekker, L. G.; Barry, C. E. Proc. Natl. Acad. Sci. U. S. A. 2000, 97,9677.
pmid: 10944230 |
[26] |
Liu, Y. G.; Matsumoto, M.; Ishida, H.; Ohguro, K.; Yoshitake, M.; Gupta, R.; Geiter, L.; Hafkin, J. Tuberculosis 2018, 111,20.
doi: 10.1016/j.tube.2018.04.008 |
[27] |
Kumar, P.; Capodagli, G. C.; Awasthi, D.; Shrestha, R.; Maharaja, K.; Sukheja, P.; Li, S. G.; Inoyama, D.; Zimmerman, M.; Liang, H. P. H.; Sarathy, J.; Mina, M.; Rasic, G.; Russo, R.; Perryman, A. L.; Richmann, T.; Gupta, A.; Singleton, E.; Verma, S.; Husain, S.; Soteropoulos, P.; Wang, Z.; Morris, R.; Porter, G.; Agnihotri, G.; Salgame, P.; Ekins, S.; Rhee, K. Y.; Connell, N.; Dartois, V.; Neiditch, M. B.; Freundlich, J. S.; Alland, D. mBio 2018, 9,e02101.
|
[28] |
Abrahams, K. A.; Chung, C. W.; Ghidelli-Disse, S.; Rullas, J.; Rebollo-Lopez, M. J.; Gurcha, S. S.; Cox, J. A. G.; Mendoza, A.; Jimenez-Navarro, E.; Martinez-Martinez, M. S.; Neu, M.; Shillings, A.; Homes, P.; Argyrou, A.; Casanueva, R.; Loman, N. J.; Moynihan, P. J.; Lelievre, J.; Selenski, C.; Axtman, M.; Kremer, L.; Bantscheff, M.; Angulo-Barturen, I.; Izquierdo, M. C.; Cammack, N. C.; Drewes, G.; Ballell, L.; Barros, D.; Besra, G. S.; Bates, R. H. Nat. Commun. 2016, 7,12581.
doi: 10.1038/ncomms12581 |
[29] |
Inoyama, D.; Awasthi, D.; Capodagli, G. C.; Tsotetsi, K.; Sukheja, P.; Zimmerman, M.; Li, S. G.; Jadhav, R.; Russo, R.; Wang, X.; Grady, C.; Richmann, T.; Shrestha, R.; Li, L. P.; Ahn, Y. M.; Ho, L. H. P.; Mina, M.; Park, S.; Freundlich, J. S. Cell Chem. Biol. 2020, 27,560-570.
doi: S2451-9456(20)30071-4 pmid: 32197094 |
[30] |
Chollet, A.; Mourey, L.; Lherbet, C.; Delbot, A.; Julien, S.; Baltas, M.; Bernadou, J.; Pratviel, G.; Maveyraud, L.; Bernardes-Génisson, V. J. Struct. Biol. 2015, 190,328.
doi: 10.1016/j.jsb.2015.04.008 |
[31] |
Rozwarski, D. A.; Vilcheze, C.; Sugantino, M.; Bittman, R.; Sacchettini, J. C. J. Biol. Chem. 1999, 274,15582.
pmid: 10336454 |
[32] |
Chollet, A.; Mourey, L.; Lherbet, C.; Delbot, A.; Julien, S.; Baltas, M.; Bernadou, J.; Pratviel, G.; Maveyraud, L.; Bernardes-Génisson, V. J. Struct. Biol. 2015, 190,328.
doi: 10.1016/j.jsb.2015.04.008 |
[33] |
Martinez-Hoyos, M.; Perez-Herran, E.; Gulten, G.; Encinas, L.; Alvarez-Gomez, D.; Alvarez, E.; Ferrer-Bazaga, S.; Garcia-Perez, A.; Ortega, F.; Angulo-Barturen, I.; Rullas-Trincado, J.; Blanco Ruano, D.; Torres, P.; Castaneda, P.; Huss, S.; Fernandez Menendez, R.; Gonzalez Del Valle, S.; Ballell, L.; Barros, D.; Modha, S.; Dhar, N.; Signorino-Gelo, F.; McKinney, J. D.; Garcia-Bustos, J. F.; Lavandera, J. L.; Sacchettini, J. C.; Jimenez, M. S.; Martin-Casabona, N.; Castro-Pichel, J.; Mendoza-Losana, A. EBioMedicine 2016, 8,291.
doi: 10.1016/j.ebiom.2016.05.006 |
[34] |
Hartkoorn, R. C.; Sala, C.; Neres, J.; Pojer, F.; Magnet, S.; Mukherjee, R.; Uplekar, S.; Boy-Rottger, S.; Altmann, K. H.; Cole, S. T. EMBO Mol. Med. 2012, 4,1032.
doi: 10.1002/emmm.201201689 pmid: 22987724 |
[35] |
Manjunatha, U. H.; Rao, S. P. S.; Kondreddi, R. R.; Noble, C. G.; Camacho, L. R.; Tan, B. H.; Ng, S. H.; Ng, P. S.; Ma, N. L.; Lakshminarayana, S. B.; Herve, M.; Barnes, S. W.; Yu, W. X.; Kuhen, K.; Blasco, F.; Beer, D.; Walker, J. R.; Tonge, P. J.; Glynne, R.; Smith, P. W.; Diagana, T. T. Sci. Transl. Med. 2015, 7,1.
|
[36] |
Pan, P.; Tonge, P. J. Curr. Top. Med. Chem. 2012, 12,672.
pmid: 22283812 |
[37] |
Dong, Y.; Qiu, X.; Shaw, N.; Xu, Y.; Sun, Y.; Li, X.; Li, J.; Rao, Z. Protein Cell. 2015, 6,504.
doi: 10.1007/s13238-015-0181-1 pmid: 26081470 |
[38] |
Bhowruth, V.; Brown, A. K.; Besra, G. S. Microbiology 2008, 154,1866.
doi: 10.1099/mic.0.2008/017434-0 |
[39] |
Grzegorzewicz, A. E.; Kordulakova, J.; Jones, V.; Born, S. E.; Belardinelli, J. M.; Vaquie, A.; Gundi, V. A.; Madacki, J.; Slama, N.; Laval, F.; Vaubourgeix, J.; Crew, R. M.; Gicquel, B.; Daffe, M.; Morbidoni, H. R.; Brennan, P. J.; Quemard, A.; McNeil, M. R.; Jackson, M. J. Biol. Chem. 2012, 287,38434.
doi: 10.1074/jbc.M112.400994 pmid: 23002234 |
[40] |
Portevin, D.; de Sousa-D'Auria, C.; Montrozier, H.; Houssin, C.; Stella, A.; Laneelle, M. A.; Bardou, F.; Guilhot, C.; Daffe, M. J. Biol. Chem. 2005, 280,8862.
pmid: 15632194 |
[41] |
Kuhn, M. L.; Alexander, E.; Minasov, G.; Page, H. J.; Warwrzak, Z.; Shuvalova, L.; Flores, K. J.; Wilson, D. J.; Shi, C.; Aldrich, C. C.; Anderson, W. F. ACS Infect. Dis. 2016, 2,579.
doi: 10.1021/acsinfecdis.6b00082 |
[42] |
Stanley, S. A.; Kawate, T.; Iwase, N.; Shimizu, M.; Clatworthy, A. E.; Kazyanskaya, E.; Sacchettini, J. C.; Ioerger, T. R.; Siddiqi, N. A.; Minami, S.; Aquadro, J. A.; Grant, S. S.; Rubin, E. J.; Hung, D. T. Proc. Natl. Acad. Sci. U. S. A. 2013, 110,11565.
doi: 10.1073/pnas.1302114110 pmid: 23798446 |
[43] |
Fang, C.; Lee, K. K.; Nietupski, R.; Bates, R. H.; Fernandez-Menendez, R.; Lopez-Roman, E. M.; Guijarro-Lopez, L.; Yin, Y.; Peng, Z.; Gomez, J. E.; Fisher, S.; Barros-Aguirre, D.; Hubbard, B. K.; Serrano-Wu, M. H.; Hung, D. T. Bioorg. Med. Chem. Lett. 2018, 28,3529.
doi: 10.1016/j.bmcl.2018.09.037 |
[44] |
Galandrin, S.; Guillet, V.; Rane, R. S.; Leger, M.; N, R.; Eynard, N.; Das, K.; Balganesh, T. S.; Mourey, L.; Daffe, M.; Marrakchi, H. J. Biomol. Screen 2013, 18,576.
doi: 10.1177/1087057112474691 pmid: 23364516 |
[45] |
Bergeret, F.; Gavalda, S.; Chalut, C.; Malaga, W.; Quemard, A.; Pedelacq, J. D.; Daffe, M.; Guilhot, C.; Mourey, L.; Bon, C. J. Biol. Chem. 2012, 287,33675.
pmid: 22825853 |
[46] |
Wilson, R.; Kumar, P.; Parashar, V.; Vilcheze, C.; Veyron-Churlet, R.; Freundlich, J. S.; Barnes, S. W.; Walker, J. R.; Szymonifka, M. J.; Marchiano, E.; Shenai, S.; Colangeli, R.; Jacobs, W. R., Jr.; Neiditch, M. B.; Kremer, L.; Alland, D. Nat. Chem. Biol. 2013, 9,499.
doi: 10.1038/nchembio.1277 |
[47] |
Thanna, S.; Knudson, S. E.; Grzegorzewicz, A.; Kapil, S.; Goins, C. M.; Ronning, D. R.; Jackson, M.; Slayden, R. A.; Sucheck, S. J. Org. Biomol. Chem. 2016, 14,6119.
doi: 10.1039/C6OB00821F |
[48] |
Ioerger, T. R.; O'Malley, T.; Liao, R.; Guinn, K. M.; Hickey, M. J.; Mohaideen, N.; Murphy, K. C.; Boshoff, H. I.; Mizrahi, V.; Rubin, E. J.; Sassetti, C. M.; Barry, C. E., 3rd; Sherman, D. R.; Parish, T.; Sacchettini, J. C. PLoS One 2013, 8,e75245.
doi: 10.1371/journal.pone.0075245 |
[49] |
Aggarwal, A.; Parai, M. K.; Shetty, N.; Wallis, D.; Woolhiser, L.; Hastings, C.; Dutta, N. K.; Galaviz, S.; Dhakal, R. C.; Shrestha, R.; Wakabayashi, S.; Walpole, C.; Matthews, D.; Floyd, D.; Scullion, P.; Riley, J.; Epemolu, O.; Norval, S.; Snavely, T.; Robertson, G. T.; Rubin, E. J.; Ioerger, T. R.; Sirgel, F. A.; van der Merwe, R.; van Helden, P. D.; Keller, P.; Bottger, E. C.; Karakousis, P. C.; Lenaerts, A. J.; Sacchettini, J. C. Cell 2017, 170,249.
doi: S0092-8674(17)30709-2 pmid: 28669536 |
[50] |
Zhang, W.; Lun, S.; Wang, S. H.; Jiang, X. W.; Yang, F.; Tang, J.; Manson, A. L.; Earl, A. M.; Gunosewoyo, H.; Bishai, W. R.; Yu, L. F. J. Med. Chem. 2018, 61,791.
doi: 10.1021/acs.jmedchem.7b01319 pmid: 29328655 |
[51] |
Zhang, W.; Lun, S.; Liu, L. L.; Xiao, S.; Duan, G.; Gunosewoyo, H.; Yang, F.; Tang, J.; Bishai, W. R.; Yu, L. F. J. Med. Chem. 2019, 62,3575.
doi: 10.1021/acs.jmedchem.9b00010 pmid: 30875203 |
[52] |
Dal, Molin, M.; Selchow, P.; Schafle, D.; Tschumi, A.; Ryckmans, T.; Laage-Witt, S.; Sander, P. J. Mol. Med. (Berl.) 2019, 97,1601.
doi: 10.1007/s00109-019-01840-7 |
[53] |
Nikaido, H. Res. Microbiol. 2018, 169,363.
doi: 10.1016/j.resmic.2018.03.001 |
[54] |
Domenech, P.; Reed, M. B.; Barry, C. E. Infect. Immun. 2005, 73,3492.
pmid: 15908378 |
[55] |
Tullius, M. V.; Harmston, C. A.; Owens, C. P.; Chim, N.; Morse, R. P.; McMath, L. M.; Iniguez, A.; Kimmey, J. M.; Sawaya, M. R.; Whitelegge, J. P.; Horwitz, M. A.; Goulding, C. W. Proc. Natl. Acad. Sci. U. S. A. 2011, 108,5051.
doi: 10.1073/pnas.1009516108 |
[56] |
Degiacomi, G.; Benjak, A.; Madacki, J.; Boldrin, F.; Provvedi, R.; Palu, G.; Kordulakova, J.; Cole, S. T.; Manganelli, R. Sci. Rep. 2017, 7,43495.
doi: 10.1038/srep43495 pmid: 28240248 |
[57] |
Grzegorzewicz, A. E.; Pham, H.; Gundi, V. A.; Scherman, M. S.; North, E. J.; Hess, T.; Jones, V.; Gruppo, V.; Born, S. E.; Kordulakova, J.; Chavadi, S. S.; Morisseau, C.; Lenaerts, A. J.; Lee, R. E.; McNeil, M. R.; Jackson, M. Nat. Chem. Biol. 2012, 8,334.
doi: 10.1038/nchembio.794 pmid: 22344175 |
[58] |
La, Rosa, V.; Poce, G.; Canseco, J. O.; Buroni, S.; Pasca, M. R.; Biava, M.; Raju, R. M.; Porretta, G. C.; Alfonso, S.; Battilocchio, C.; Javid, B.; Sorrentino, F.; Ioerger, T. R.; Sacchettini, J. C.; Manetti, F.; Botta, M.; De, Logu, A.; Rubin, E. J.; De, Rossi, E. Antimicrob. Agents Chemother. 2012, 56,324.
doi: 10.1128/AAC.05270-11 |
[59] |
Stanley, S. A.; Grant, S. S.; Kawate, T.; Iwase, N.; Shimizu, M.; Wivagg, C.; Silvis, M.; Kazyanskaya, E.; Aquadro, J.; Golas, A.; Fitzgerald, M.; Dai, H.; Zhang, L.; Hung, D. T. ACS Chem. Biol. 2012, 7,1377.
doi: 10.1021/cb300151m pmid: 22577943 |
[60] |
Tahlan, K.; Wilson, R.; Kastrinsky, D. B.; Arora, K.; Nair, V.; Fischer, E.; Barnes, S. W.; Walker, J. R.; Alland, D.; Barry, C. E., 3rd; Boshoff, H. I. Antimicrob. Agents Chemother. 2012, 56,1797.
doi: 10.1128/AAC.05708-11 |
[61] |
Lun, S.; Guo, H.; Onajole, O. K.; Pieroni, M.; Gunosewoyo, H.; Chen, G.; Tipparaju, S. K.; Ammerman, N. C.; Kozikowski, A. P.; Bishai, W. R. Nat. Commun. 2013, 4,2907.
doi: 10.1038/ncomms3907 |
[62] |
Rao, S. P. S.; Lakshminarayana, S. B.; Kondreddi, R. R.; Herve, M.; Camacho, L. R.; Bifani, P.; Kalapala, S. K.; Jiricek, J.; Ma, N. L.; Tan, B. H.; Ng, S. H.; Nanjundappa, M.; Ravindran, S.; Seah, P. G.; Thayalan, P.; Lim, S. H.; Lee, B. H.; Goh, A.; Barnes, W. S.; Chen, Z.; Gagaring, K.; Chatterjee, A. K.; Pethe, K.; Kuhen, K.; Walker, J.; Feng, G.; Babu, S.; Zhang, L. J.; Blasco, F.; Beer, D.; Weaver, M.; Dartois, V.; Glynne, R.; Dick, T.; Smith, P. W.; Diagana, T. T.; Manjunatha, U. H. Sci. Transl. Med. 2013, 5.214.
|
[63] |
Remuinan, M. J.; Perez-Herran, E.; Rullas, J.; Alemparte, C.; Martinez-Hoyos, M.; Dow, D. J.; Afari, J.; Mehta, N.; Esquivias, J.; Jimenez, E.; Ortega-Muro, F.; Fraile-Gabaldon, M. T.; Spivey, V. L.; Loman, N. J.; Pallen, M. J.; Constantinidou, C.; Minick, D. J.; Cacho, M.; Rebollo-Lopez, M. J.; Gonzalez, C.; Sousa, V.; Angulo-Barturen, I.; Mendoza-Losana, A.; Barros, D.; Besra, G. S.; Ballell, L.; Cammack, N. PLoS One 2013, 8,e60933.
doi: 10.1371/journal.pone.0060933 |
[64] |
Foss, M. H.; Pou, S.; Davidson, P. M.; Dunaj, J. L.; Winter, R. W.; Pou, S.; Licon, M. H.; Doh, J. K.; Li, Y.; Kelly, J. X.; Dodean, R. A.; Koop, D. R.; Riscoe, M. K.; Purdy, G. E. ACS Infect. Dis. 2016, 2,500.
doi: 10.1021/acsinfecdis.6b00052 |
[65] |
Dupont, C.; Viljoen, A.; Dubar, F.; Blaise, M.; Bernut, A.; Pawlik, A.; Bouchier, C.; Brosch, R.; Guerardel, Y.; Lelievre, J.; Ballell, L.; Herrmann, J. L.; Biot, C.; Kremer, L. Mol. Microbiol. 2016, 101,515.
doi: 10.1111/mmi.2016.101.issue-3 |
[66] |
Shetty, A.; Xu, Z.; Lakshmanan, U.; Hill, J.; Choong, M. L.; Chng, S. S.; Yamada, Y.; Poulsen, A.; Dick, T.; Gengenbacher, M. Front. Microbiol. 2018, 9,2960.
doi: 10.3389/fmicb.2018.02960 |
[67] |
Zheng, H.; Williams, J. T.; Coulson, G. B.; Haiderer, E. R.; Abramovitch, R. B. Antimicrob. Agents Chemother. 2018, 62,02459-17.
|
[68] |
Sacksteder, K. A.; Protopopova, M.; Barry, C. E.; Andries, K.; Nacy, C. A. Future Microbiol. 2012, 7,823.
doi: 10.2217/fmb.12.56 pmid: 22827305 |
[69] |
Jia, J.; Tomaszewski, J. E.; Hanrahan, C.; Coward, L.; Noker, P.; Gorman, G.; Nikonenko, B.; Protopopova, M. Br. J. Pharmacol. 2005, 144,80.
doi: 10.1038/sj.bjp.0705984 |
[70] |
Reddy, V. M.; Einck, L.; Andries, K.; Nacy, C. A. Antimicrob. Agents Chemother. 2010, 54,2840.
doi: 10.1128/AAC.01601-09 |
[71] |
Ballell, L.; Bates, R. H.; Young, R. J.; Alvarez-Gomez, D.; Alvarez-Ruiz, E.; Barroso, V.; Blanco, D.; Crespo, B.; Escribano, J.; Gonzalez, R.; Lozano, S.; Huss, S.; Santos-Villarejo, A.; Martin-Plaza, J. J.; Mendoza, A.; Rebollo-Lopez, M. J.; Remuinan-Blanco, M.; Lavandera, J. L.; Perez-Herran, E.; Gamo-Benito, F. J.; Garcia-Bustos, J. F.; Barros, D.; Castro, J. P.; Cammack, N. ChemMedChem 2013, 8,313.
doi: 10.1002/cmdc.201200428 pmid: 23307663 |
[72] |
Onajole, O. K.; Pieroni, M.; Tipparaju, S. K.; Lun, S.; Stec, J.; Chen, G.; Gunosewoyo, H.; Guo, H.; Ammerman, N. C.; Bishai, W. R.; Kozikowski, A. P. J. Med. Chem. 2013, 56,4093.
doi: 10.1021/jm4003878 |
[73] |
Kondreddi, R. R.; Jiricek, J.; Rao, S. P.; Lakshminarayana, S. B.; Camacho, L. R.; Rao, R.; Herve, M.; Bifani, P.; Ma, N. L.; Kuhen, K.; Goh, A.; Chatterjee, A. K.; Dick, T.; Diagana, T. T.; Manjunatha, U. H.; Smith, P. W. J. Med. Chem. 2013, 56,8849.
doi: 10.1021/jm4012774 pmid: 24090347 |
[74] |
Stec, J.; Onajole, O. K.; Lun, S.; Guo, H.; Merenbloom, B.; Vistoli, G.; Bishai, W. R.; Kozikowski, A. P. J. Med. Chem. 2016, 59,6232.
doi: 10.1021/acs.jmedchem.6b00415 |
[75] |
Li, W.; Sanchez-Hidalgo, A.; Jones, V.; de Moura, V. C.; North, E. J.; Jackson, M. Antimicrob. Agents Chemother. 2017,61.
|
[76] |
Poce, G.; Cocozza, M.; Alfonso, S.; Consalvi, S.; Venditti, G.; Fernandez-Menendez, R.; Bates, R. H.; Barros Aguirre, D.; Ballell, L.; De Logu, A.; Vistoli, G.; Biava, M. Eur. J. Med. Chem. 2018, 145,539.
doi: 10.1016/j.ejmech.2017.12.075 |
[77] |
Scherman, M. S.; North, E. J.; Jones, V.; Hess, T. N.; Grzegorzewicz, A. E.; Kasagami, T.; Kim, I. H.; Merzlikin, O.; Lenaerts, A. J.; Lee, R. E.; Jackson, M.; Morisseau, C.; McNeil, M. R. Bioorg. Med. Chem. 2012, 20,3255.
doi: 10.1016/j.bmc.2012.03.058 |
[78] |
Ramesh, R.; Shingare, R. D.; Kumar, V.; Anand, A.; B, S.; Veeraraghavan, S.; Viswanadha, S.; Ummanni, R.; Gokhale, R.. Srinivasa Reddy, D. Eur. J. Med. Chem. 2016, 122,723.
doi: S0223-5234(16)30557-8 pmid: 27476117 |
[79] |
Zhang, B.; Li, J.; Yang, X.; Wu, L.; Zhang, J.; Yang, Y.; Zhao, Y.; Zhang, L.; Yang, X.; Yang, X.; Cheng, X.; Liu, Z.; Jiang, B.; Jiang, H.; Guddat, L. W.; Yang, H.; Rao, Z. Cell 2019, 176,636.
doi: S0092-8674(19)30036-4 pmid: 30682372 |
[80] |
Li, W.; Stevens, C. M.; Pandya, A. N.; Darzynkiewicz, Z.; Bhattarai, P.; Tong, W.; Gonzalez-Juarrero, M.; North, E. J.; Zgurskaya, H. I.; Jackson, M. ACS Infect. Dis. 2019, 5,1001.
doi: 10.1021/acsinfecdis.9b00048 |
[81] |
Ronning, D. R.; Vissa, V.; Besra, G. S.; Belisle, J. T.; Sacchettini, J. C. J. Biol. Chem. 2004, 279,36771.
pmid: 15192106 |
[82] |
Anderson, D. H.; Harth, G.; Horwitz, M. A.; Eisenberg, D. J. Mol. Biol. 2001, 307,671.
pmid: 11254389 |
[83] |
Content, J.; de la Cuvellerie, A.; De Wit, L.; Vincent-Levy-Frebault, V.; Ooms, J.; De Bruyn, J. Infect. Immun. 1991, 59,3205.
pmid: 1715324 |
[84] |
Jackson, M.; Raynaud, C.; Laneelle, M. A.; Guilhot, C.; Laurent-Winter, C.; Ensergueix, D.; Gicquel, B.; Daffe, M. Mol. Microbiol. 1999, 31,1573.
pmid: 10200974 |
[85] |
Warrier, T.; Tropis, M.; Werngren, J.; Diehl, A.; Gengenbacher, M.; Schlegel, B.; Schade, M.; Oschkinat, H.; Daffe, M.; Hoffner, S.; Eddine, A. N.; Kaufmann, S. H. Antimicrob. Agents Chemother. 2012, 56,1735.
doi: 10.1128/AAC.05742-11 |
[86] |
Lehmann, J.; Cheng, T. Y.; Aggarwal, A.; Park, A. S.; Zeiler, E.; Raju, R. M.; Akopian, T.; Kandror, O.; Sacchettini, J. C.; Moody, D. B.; Rubin, E. J.; Sieber, S. A. Angew. Chem. Int. Ed. 2018, 57,348.
doi: 10.1002/anie.201709365 |
[87] |
Liu, Y. G.; Matsumoto, M.; Ishida, H.; Ohguro, K.; Yoshitake, M.; Gupta, R.; Geiter, L.; Hafkin, J. Tuberculosis 2018, 111,20.
doi: 10.1016/j.tube.2018.04.008 |
[88] |
Ashtekar, D. R.; Costa-Perira, R.; Nagrajan, K.; Vishvanathan, N.; Bhatt, A. D.; Rittel, W. Antimicrob. Agents Chemother. 1993, 37,183.
doi: 10.1128/AAC.37.2.183 |
[89] |
Matsumoto, M.; Hashizume, H.; Tomishige, T.; Kawasaki, M.; Tsubouchi, H.; Sasaki, H.; Shimokawa, Y.; Komatsu, M. PLoS Med. 2006, 3,e466.
doi: 10.1371/journal.pmed.0030466 |
[90] |
Sasaki, H.; Haraguchi, Y.; Itotani, M.; Kuroda, H.; Hashizume, H.; Tomishige, T.; Kawasaki, M.; Matsumoto, M.; Komatsu, M.; Tsubouchi, H. J. Med. Chem. 2006, 49,7854.
doi: 10.1021/jm060957y |
[91] |
Zhao, W.; Wang, B.; Liu, Y.; Fu, L.; Sheng, L.; Zhao, H.; Lu, Y.; Zhang, D. Eur. J. Med. Chem. 2020, 189,112075.
doi: 10.1016/j.ejmech.2020.112075 |
[92] |
Conradie, F.; Diacon, A. H.; Ngubane, N.; Howell, P.; Everitt, D.; Crook, A. M.; Mendel, C. M.; Egizi, E.; Moreira, J.; Timm, J.; McHugh, T. D.; Wills, G. H.; Bateson, A.; Hunt, R.; Van Niekerk, C.; Li, M.; Olugbosi, M.; Spigelman, M.; Nix, T. B. T. T. N. Engl. J. Med. 2020, 382,893.
doi: 10.1056/NEJMoa1901814 |
[1] | Jianfei Gao, Shunyi Li, Yulong He, Yingxia Li, Heyao Wang, Erfang Huang, Chun Hu. Design, Synthesis and Biological Evaluation of FABP4/5 Inhibitors Based on Quinoline Scaffold [J]. Chinese Journal of Organic Chemistry, 2023, 43(2): 636-645. |
[2] | Guangping Liang, Wei Wang, Xuxiu Zhu, Guangyan Liang, Jun Yang, Daoping Wang. Synthesis and in Vitro Anti-tumor Activity of Novel Spliced Compounds of Zidovudine and 4-Anilinoquinazolines [J]. Chinese Journal of Organic Chemistry, 2022, 42(9): 2793-2805. |
[3] | Rong Zhang, Xiang Gao, Lingling Chen, Fajun Nan. Discovery and Structure-Activity Relationship Studies of Thiazole- Oxazole Tandem Heterocyclic RNA Splicing Inhibitors [J]. Chinese Journal of Organic Chemistry, 2022, 42(9): 2925-2939. |
[4] | Ming Cai, Liang Shao, Fan Yang, Jihong Zhang, Fei Yu. Design, Synthesis of Pentacyclic Triterpenoid Glucose Conjugate and in vitro Activity against Influenza Virus [J]. Chinese Journal of Organic Chemistry, 2022, 42(5): 1453-1462. |
[5] | Fengxing Li, Xin Lu, Xu Liu, Lulu Su, Xiaoliu Li, Hua Chen. Structural Modification of Benzimidazole-Iminosugars and Their Inhibitory Activities against β-Glycosidases [J]. Chinese Journal of Organic Chemistry, 2021, 41(9): 3643-3651. |
[6] | Zheng Zhang, Chengqiu Dai, Honghong Wu, Jingya Li, Fajun Nan. Design and Synthesis of Alkyl Phenols Inhibitors of Death Associated Apoptotic Protein Kinase 2 (DRAK2) [J]. Chinese Journal of Organic Chemistry, 2021, 41(8): 3204-3213. |
[7] | Lijie Yu, Bo Feng, Zhijia Wang, Lixin Gao, Chun Zhang, Rajendran Satheeshkumar, Jia Li, Yubo Zhou, Wenlong Wang. Synthesis of 5-Phenyl-1,3,4-thiadiazole Derivatives and Their Biochemical Evaluation against Src Homology 2 Domain-Containing Protein Tyrosine Phosphatase 1 (SHP1) [J]. Chinese Journal of Organic Chemistry, 2021, 41(8): 3097-3105. |
[8] | Xu Liu, Lulu Su, Zhaoxi Zhou, Liping Niu, Ligang Gao, Huanhuan Ju, Fengxing Li, Xiaoliu Li, Hua Chen. Design and Synthesis of Benzimidazole-Iminosugars and Their Inhibitory Activities against Glycosidases [J]. Chinese Journal of Organic Chemistry, 2021, 41(7): 2861-2874. |
[9] | Liang Shao, Fan Yang, Weijia Li, Fei Yu. Design, Synthesis and Anti-influenza A Virus Evaluation of Oleanolic Acid C3-Glycoconjugates [J]. Chinese Journal of Organic Chemistry, 2021, 41(6): 2454-2466. |
[10] | Zhang Qiying, Zhang Yiming, Hao Erjun, Bai Juan, Qu Guirong, Guo Haiming. Asymmetric Transfer Hydrogenation via Dynamic Kinetic Resolution for the Construction of Carbocyclic N3-Purine Nucleosides [J]. Chinese Journal of Organic Chemistry, 2020, 40(2): 376-383. |
[11] | Dong Haoran, Subiding Tayier, Wang Xin, Lei Xiaoguang. Research Progress of Covalent Inhibitors [J]. Chin. J. Org. Chem., 2018, 38(9): 2296-2306. |
[12] | Li Yingjun, Wang Siyuan, Jin Kun, Gao Lixin, Sheng Li, Zhang Nan, Yang Kaidong, Zhao Yue, Li Jian. Synthesis and Cell Division Cycle 25B Phosphatase/Protein Tyrosine Phosphatase 1B Inhibitory Activity Evaluation of Novel Acylthiourea Derivatives [J]. Chin. J. Org. Chem., 2018, 38(5): 1242-1250. |
[13] | Hou Guige, Jiang Chengshi, Liu Hongchun, Tong Linjiang, Peng Xia, Ji Yinchun, Geng Meiyu, Xiao Wei, Gong Jingxu, Guo Yuewei. Synthesis and Activity Evaluation of Novel 3,4-Dihydro-benzo[b]-oxazepin-5(2H)-one Derivatives as Protein Kinases Inhibitors [J]. Chin. J. Org. Chem., 2017, 37(6): 1463-1472. |
[14] | Li Yingjun, Li Jiyang, Peng Lin, Gao Lixin, Jin Kun, Sheng Li, Zhang Nan, Wang Siyuan, Li Jia. Synthesis and Cell Division Cycle 25B Phosphatase and Protein Ty-rosine Phosphatase 1B Inhibitory Activity Evaluation of Novel 3,6-Disubstituted Triazolothiadiazole Derivatives [J]. Chin. J. Org. Chem., 2017, 37(2): 485-495. |
[15] | Wang Wenlong, Luo Huan, Gao Ya, Gao Lixin, Sheng Li, Zhou Yubo, Li Jia, Li Jingya, Feng Bainian. Synthesis of Aromatic Amide Derivatives and Their Biological Evaluation against Protein Tyrosine Phosphatase 1B and Scr Homology-2 Domain Containing Protein Tyrosine Phosphatase-2 [J]. Chin. J. Org. Chem., 2016, 36(9): 2142-2149. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||