化学学报 ›› 2016, Vol. 74 ›› Issue (9): 734-737.DOI: 10.6023/A16070352 上一篇    下一篇

研究通讯

Aerolysin纳米孔道对寡聚核苷酸的高灵敏单分子检测

曹婵, 廖冬芳, 应佚伦, 龙亿涛   

  1. 华东理工大学化学与分子工程学院结构可控先进功能材料及其制备教育部重点实验室 上海 200237
  • 投稿日期:2016-07-19 发布日期:2016-08-10
  • 通讯作者: 龙亿涛 E-mail:ytlong@ecust.edu.cn
  • 基金资助:

    项目受国家自然科学基金(Nos.21327807,21421004)和高等学校学科创新引智计划(No.B16017)资助.

Detection of Single Oligonucleotide by an Aerolysin Nanopore

Cao Chan, Liao Dongfang, Ying Yilun, Long Yitao   

  1. Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237
  • Received:2016-07-19 Published:2016-08-10
  • Supported by:

    Project supported by the National Natural Science Foundation of China (Nos. 21327807, 21421004) and the Program of Introducing Talents of Discipline to Universities (No. B16017).

自纳米孔道单分子电化学技术提出以来,为了构建性能良好的纳米孔道,研究人员一直在寻找不同的孔道材料. 本研究探索了Aerolysin生物纳米孔道在寡聚核苷酸检测方面的可能性. 实验结果表明,与常用的α-溶血素纳米孔道相比,Aerolysin纳米孔道在寡聚核苷酸检测方面表现出更强的空间和时间分辨能力. 三个碱基长度的寡聚核苷酸可对Aerolysin纳米孔道造成约为40%的电流阻断. 阻断时间表现出电压相关性,随电压的升高而减小. 与其他生物纳米孔道相比,Aerolysin纳米孔道无需任何基因突变、化学修饰即可实现对单个寡聚核苷酸的超灵敏分析. 未来,Aerolysin纳米孔道将有可能应用于DNA损伤检测、microRNA分析以及其他基于纳米孔道的单分子分析检测.

关键词: 气单胞菌溶素, 生物纳米孔道, 单分子检测, 寡聚核苷酸

Since the nanopore single-molecule technology has been proposed, it remains a big challenge to generate a sensitive and stable nano-scale pore. In order to achieve this goal, membrane proteins, solid-state nanopore and other materials such as DNA origami have been involved to fabricate a suitable nanopore. Compared to the solid-state nanopores, biological nanopores perform a higher resolution for single molecule analysis. Therefore, the investigation of finding new biological nanopores is very important to realize the discrimination of single oligonucleotide. Aerolysin biological nanopore has been applied for the study of oligosaccharides, peptides, protein unfolding and small organic molecules so far. Here, we report that Aerolysin could be utilized for oligonucleotide analysis. The data demonstrated that Aerolysin nanopore has a high resolution both for current and time compared with other most widely used wild-type biological nanopores, such as α-hemolysin and Mycobacterium smegmatis porin A (MspA). It may be because of its narrow diameter and positive charged amino acids in the lumen. One Aerolysin pore generates a 50 pA constant ion current in 1 mol/L KCl solution, as a three nucleotides length oligonucleotides (5'-AGG-3') traversing through nanopore could induce nearly 40% current blockage. In comparison, no current blockage signals were observed when 5'-AGG-3' driven from either cis or trans side of the α-hemolysin nanopore. Furthermore, the statistical analysis of duration time of single oligonucleotide through Aerolysin indicates a relationship scale with applied voltage, as the voltage increased from 80 to 160 mV, the duration gradually decreased. Although Aerolysin nanopore has been investigated for nearly 10 years, its ability to detect oligonucleotide was not highlighted. Our findings explored high sensing capabilities of Aerolysin nanopore in the analysis of single oligonucleotide, and extended its application to single-molecule nucleic acid analysis. Aerolysin is a promising candidate for the DNA sensing, DNA damage detection, microRNA analysis and other single molecule investigations.

Key words: Aerolysin, biological nanopores, single-molecule detection, oligonucleotides