化学学报 ›› 2018, Vol. 76 ›› Issue (5): 329-346.DOI: 10.6023/A18020076 上一篇    下一篇

综述

单核铁-氧和锰-氧加合物研究进展

杜俊毅a,b, 夏春谷a, 孙伟a   

  1. a 中国科学院兰州化学物理研究所 羰基合成与选择氧化国家重点实验室 兰州化学物理研究所苏州研究院 兰州 730000;
    b 中国科学院大学 北京 100049
  • 投稿日期:2018-02-22 发布日期:2018-03-30
  • 通讯作者: 孙伟,E-mail:wsun@licp.cas.cn;Tel.:0931-4968278;Fax:0931-4968129 E-mail:wsun@licp.cas.cn
  • 作者简介:杜俊毅,中国科学院兰州化学物理研究所在读博士生.2012年6月毕业于河南师范大学并获得理学学士学位.同年9月进入中国科学院兰州化学物理研究所物理化学专业攻读博士学位,师从孙伟研究员.主要从事非血红素酶仿生催化氧化反应的机理研究;夏春谷,博士,中国科学院兰州化学物理研究所研究员.国家杰出青年基金获得者,新世纪百千万人才工程国家级人选.近年来,重点开展了原子经济反应导向的催化基础研究和环境友好的能源化工新技术研发.在国际重要学术期刊上合作发表研究论文400余篇,申请和授权国内外发明专利100余件;孙伟,博士,中国科学院兰州化学物理研究所研究员.2005年入选中国科学院"百人计划"并获择优支持.目前主要开展非血红素模拟酶催化氧化及反应机理的研究工作,已在J. Am. Chem. Soc.,Angew. Chem. Int. Ed.,Chem. Sci.等国内外期刊发表论文100余篇.
  • 基金资助:

    项目得到国家自然科学基金(Nos.21473226,21773273)和江苏省自然科学基金(No.BK20161261)资助.

Progress in Mononuclear Iron-Oxygen and Manganese-Oxygen Adducts

Du Junyia,b, Xia Chungua, Sun Weia   

  1. a State Key Laboratory for Oxo Synthesis and Selective Oxidation, and Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics(LICP), Chinese Academy of Sciences, Lanzhou 730000;
    b University of Chinese Academy of Sciences, Beijing 100049
  • Received:2018-02-22 Published:2018-03-30
  • Supported by:

    Project supported by the National Natural Science Foundation of China (Nos. 21473226, 21773273), and the Natural Science Foundation of Jiangsu Province (No. BK20161261).

生物体系中,金属酶活化氧气进而参与新陈代谢相关的各种氧化反应,可高效实现有机化合物氧化反应.因此,揭示金属酶的循环机理,对发展清洁高效的催化氧化反应具有重要的指导意义.金属酶的循环过程通常会形成一系列的金属-氧加合物,如金属超氧、过氧、过氧化氢、氧及羟基等物种.由于生物体的酶循环过程十分复杂,所形成的高活性的金属-氧加合物极难捕捉和表征.为此,化学家开展了生物酶的仿生模拟研究,即用化学的方法仿照酶的活性位点构建具有类似配位环境的金属中心,获得人工合成的各种金属-氧加合物,进而了解其结构与活性.本文以近年来单核铁-氧和锰-氧加合物取得重要进展为背景,举例说明金属酶活化氧气所涉及的金属-氧加合物,并重点从结构及活性等方面总结了模拟酶的金属-氧加合物的研究进展.

关键词: 金属-氧加合物, 金属酶, 模拟酶, C—H键活化, 氧气活化

In biological system, metalloenzymes utilize dioxygen for metabolically oxidative transformations, in which organic compounds can be oxidized efficiently. Therefore, it is of great interest to unravel the enzymatic mechanism in the development of clean and efficient catalytic oxidation reactions. In the dioxygen activation by metalloenzymes, a series of metal-oxygen adducts, such as metal-superoxo, -peroxo, -hydroperoxo, -oxo and -hydroxo species, are formed as the active intermediates. In general, these intermeditates are difficult to capture for further characterizations and investigations because of their unstability and the complicated enzymatic systems. Alternatively, the enzyme models, designed and synthesized by mimicking the active center and coordination environment of metalloenzymes, can be easily acquired and manipulated for further structure and reactivity studies. In this review, we briefly illustrate the active sites of metalloenzymes in biology and focus on the recent achievements in mononuclear iron-oxygen and manganese-oxygen adducts in biomimetic studies.

Key words: metal-oxygen adduct, metalloenzymes, enzyme models, C—H bond activation, dioxygen activation