化学学报 ›› 2021, Vol. 79 ›› Issue (10): 1197-1213.DOI: 10.6023/A21060255 上一篇    下一篇

综述

固态锂电池电极过程的原位研究进展

田建鑫a,b, 郭慧娟a,b, 万静a,b, 刘桂贤a,b, 严会娟a,b, 文锐a,b,*(), 万立骏a,b   

  1. a 中国科学院化学研究所 中国科学院分子纳米结构与纳米技术重点实验室 中国科学院分子科学科教融合卓越中心 北京分子科学国家研究中心 北京 100190
    b 中国科学院大学 北京 100049
  • 投稿日期:2021-06-07 发布日期:2021-08-27
  • 通讯作者: 文锐
  • 作者简介:

    田建鑫, 中国科学院化学研究所分子纳米结构与纳米技术重点实验室2019级硕士研究生, 主要从事固态锂电池正极过程的原位研究.

    郭慧娟, 中国科学院化学研究所分子纳米结构与纳米技术重点实验室2018级博士研究生, 主要从事固态锂电池正极过程的原位研究.

    万静, 中国科学院化学研究所分子纳米结构与纳米技术重点实验室2017级博士研究生, 主要从事固态锂电池负极过程的原位研究.

    刘桂贤, 中国科学院化学研究所分子纳米结构与纳米技术重点实验室2018级博士研究生, 主要从事固态Li-S电池负极过程的原位研究.

    严会娟, 中国科学院化学研究所分子纳米结构与纳米技术重点实验室副研究员, 研究方向为扫描探针显微技术及应用.

    文锐, 中国科学院化学研究所分子纳米结构与纳米技术重点实验室研究员、博士生导师, 国家自然科学基金优秀青年科学基金获得者, 主要研究领域是界面电化学.

    万立骏, 中国科学院院士, 发展中国家科学院院士, 中国科学院化学研究所研究员、博士生导师, 国家杰出青年科学基金获得者, 主要从事扫描探针显微学、电化学和纳米材料科学的研究.

  • 基金资助:
    国家重点研发计划(2016YFA0202500); 国家自然科学基金优秀青年科学基金(21722508)

In Situ/Operando Advances of Electrode Processes in Solid-state Lithium Batteries

Jianxin Tiana,b, Huijuan Guoa,b, Jing Wana,b, Guixian Liua,b, Huijuan Yana,b, Rui Wena,b(), Lijun Wana,b   

  1. a Institute of Chemistry Chinese Academy of Sciences, CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
    b University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2021-06-07 Published:2021-08-27
  • Contact: Rui Wen
  • Supported by:
    National Key R&D Program of China(2016YFA0202500); National Natural Science Fund for Excellent Young Scholars(21722508)

固态锂电池(SSLBs)由于其安全性和潜在的高能量密度优势, 被认为是下一代动力电池的重要发展方向. 然而, 目前仍存在固态电解质离子电导率低, 电极/电解质界面兼容性和稳定性差等瓶颈问题. 为了提高SSLBs的性能, 阐明循环过程中电极、固态电解质及其界面间的动态演化是至关重要的. 在过去的几十年里, 各种先进原位表征技术的出现, 促进了对高性能锂电池内部工作机制的理解, 推动了SSLBs进一步发展. 本综述系统地介绍了近几年原子力显微镜、电子显微镜、X射线显微镜等成像表征技术和拉曼光谱、X-ray基技术、中子深度分析等成分分析技术的原位研究进展. 重点分析了各类表征技术在SSLBs循环过程中形貌和组分的演化, 包括正极材料的相变、形变, 金属锂的沉积/溶解、锂枝晶生长, 固态电解质结构演化和固体电解质中间相的形成, 进一步加深了对固态锂电池的理解.

关键词: 固态锂电池, 电极过程, 固体电解质中间相, 原位技术

Solid-state lithium batteries (SSLBs) are considered to be an important development direction for the next generation of power batteries due to their safety and potentially high energy density. However, there are several challenges including low ionic conductivity, poor stability/incompatibility between electrodes and electrolytes at present. To improve the performance of SSLBs, it is very important to clarify the dynamic evolution of electrodes, solid electrolytes, and their interfaces in the cycle process. In the past few decades, the emergence of various advanced in-situ characterization technologies has improved the understanding of the working mechanism of high-performance lithium batteries and promoted further development. Herein, we present a comprehensive overview of the in situ research progress of atomic force microscope, electron microscope, X-ray microscope and other imaging characterization techniques, and component analysis techniques such as Raman spectroscopy, X-ray technology, and neutron depth analysis in recent years. The focus is on the application research of various characterization techniques in morphology and composition evolution processes of the SSLBs, including the phase transformation and deformation of the cathode materials, the deposition/dissolution of lithium metal, the growth of lithium dendrites, the structure evolution of solid electrolytes, and the formation of the solid electrolyte interphase, which strengths the understanding of solid-state lithium batteries.

Key words: solid-state lithium battery, electrode process, solid electrolyte interphase, in situ technology